
Celina G Kleer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1530638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 2007, 1, 555-567.	11.1	3,550
2	EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11606-11611.	7.1	1,482
3	Poised Chromatin at the ZEB1 Promoter Enables Breast Cancer Cell Plasticity and Enhances Tumorigenicity. Cell, 2013, 154, 61-74.	28.9	753
4	Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks. Cancer Research, 2011, 71, 614-624.	0.9	573
5	CXCR7 (RDC1) promotes breast and lung tumor growth <i>in vivo</i> and is expressed on tumor-associated vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15735-15740.	7.1	496
6	BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1680-1685.	7.1	417
7	E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Research, 2003, 5, R217-22.	5.0	323
8	Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer and Metastasis Reviews, 2012, 31, 295-321.	5.9	315
9	Alpha-Methylacyl-CoA Racemase. American Journal of Surgical Pathology, 2002, 26, 926-931.	3.7	274
10	Identification of GATA3 as a Breast Cancer Prognostic Marker by Global Gene Expression Meta-analysis. Cancer Research, 2005, 65, 11259-11264.	0.9	272
11	Aerobic Glycolysis Controls Myeloid-Derived Suppressor Cells and Tumor Immunity via a Specific CEBPB Isoform in Triple-Negative Breast Cancer. Cell Metabolism, 2018, 28, 87-103.e6.	16.2	263
12	Canonical Wnt signaling regulates Slug activity and links epithelial–mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16654-16659.	7.1	256
13	Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling. Cancer Research, 2016, 76, 3156-3165.	0.9	224
14	Persistent E-Cadherin Expression in Inflammatory Breast Cancer. Modern Pathology, 2001, 14, 458-464.	5.5	204
15	p63 Expression in Breast Cancer. American Journal of Surgical Pathology, 2004, 28, 1506-1512.	3.7	196
16	Characterization of RhoC Expression in Benign and Malignant Breast Disease. American Journal of Pathology, 2002, 160, 579-584.	3.8	187
17	African ancestry and higher prevalence of tripleâ€negative breast cancer. Cancer, 2010, 116, 4926-4932.	4.1	183
18	EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3098-3103.	7.1	170

#	Article	IF	CITATIONS
19	Phyllodes Tumor of the Breast: Histopathologic Features, Differential Diagnosis, and Molecular/Genetic Updates. Archives of Pathology and Laboratory Medicine, 2016, 140, 665-671.	2.5	163
20	Genetic Changes of Wnt Pathway Genes Are Common Events in Metaplastic Carcinomas of the Breast. Clinical Cancer Research, 2008, 14, 4038-4044.	7.0	144
21	WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene, 2002, 21, 3172-3180.	5.9	141
22	Protein Kinase Cε Is a Predictive Biomarker of Aggressive Breast Cancer and a Validated Target for RNA Interference Anticancer Therapy. Cancer Research, 2005, 65, 8366-8371.	0.9	140
23	Breast Tumor Kinase (Protein Tyrosine Kinase 6) Regulates Heregulin-Induced Activation of ERK5 and p38 MAP Kinases in Breast Cancer Cells. Cancer Research, 2007, 67, 4199-4209.	0.9	132
24	ldentification of EZH2 as a Molecular Marker for a Precancerous State in Morphologically Normal Breast Tissues. Cancer Research, 2006, 66, 4095-4099.	0.9	120
25	Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia. American Journal of Pathology, 2009, 175, 1246-1254.	3.8	114
26	Pathologic, Immunohistochemical, and Molecular Features of Benign and Malignant Phyllodes Tumors of the Breast. Modern Pathology, 2001, 14, 185-190.	5.5	113
27	Next-Gen Sequencing Exposes Frequent <i>MED12</i> Mutations and Actionable Therapeutic Targets in Phyllodes Tumors. Molecular Cancer Research, 2015, 13, 613-619.	3.4	113
28	Atorvastatin prevents RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Molecular Cancer Therapeutics, 2003, 2, 941-8.	4.1	109
29	RhoC-GTPase is a Novel Tissue Biomarker Associated with Biologically Aggressive Carcinomas of the Breast. Breast Cancer Research and Treatment, 2005, 93, 101-110.	2.5	101
30	Histone Methyltransferase EZH2 Induces Akt-Dependent Genomic Instability and BRCA1 Inhibition in Breast Cancer. Cancer Research, 2011, 71, 2360-2370.	0.9	97
31	WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Research, 2004, 6, R110.	5.0	95
32	Adenoid Cystic Carcinoma of the Breast. American Journal of Surgical Pathology, 1998, 22, 569-575.	3.7	91
33	Epithelial and Stromal Cathepsin K and CXCL14 Expression in Breast Tumor Progression. Clinical Cancer Research, 2008, 14, 5357-5367.	7.0	90
34	Metaplastic breast carcinomas are enriched in markers of tumor-initiating cells and epithelial to mesenchymal transition. Modern Pathology, 2012, 25, 178-184.	5.5	89
35	Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Reports, 2017, 18, 1215-1228.	6.4	88
36	p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nature Communications, 2018, 9, 2801.	12.8	87

#	Article	lF	CITATIONS
37	Squamous Cell Carcinoma of the Thyroid: An Aggressive Tumor Associated with Tall Cell Variant of Papillary Thyroid Carcinoma. Modern Pathology, 2000, 13, 742-746.	5.5	86
38	The Polycomb Group Protein EZH2 Impairs DNA Repair in Breast Epithelial Cells. Neoplasia, 2005, 7, 1011-1019.	5.3	86
39	WISP3 (CCN6) Is a Secreted Tumor-Suppressor Protein that Modulates IGF Signaling in Inflammatory Breast Cancer. Neoplasia, 2004, 6, 179-185.	5.3	82
40	Expression of polycomb group protein EZH2 in nevi and melanoma. Journal of Cutaneous Pathology, 2007, 34, 597-600.	1.3	82
41	A Putative Role for Psoriasin in Breast Tumor Progression. Cancer Research, 2005, 65, 11326-11334.	0.9	79
42	Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	70
43	Phase II Trial of Tipifarnib plus Neoadjuvant Doxorubicin-Cyclophosphamide in Patients with Clinical Stage IIB-IIIC Breast Cancer. Clinical Cancer Research, 2009, 15, 2942-2948.	7.0	69
44	EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development. Modern Pathology, 2011, 24, 786-793.	5.5	66
45	CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer. Nature Communications, 2019, 10, 5114.	12.8	64
46	Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors. Nature Communications, 2020, 11, 1723.	12.8	64
47	CCN6 Modulates BMP Signaling via the Smad-Independent TAK1/p38 Pathway, Acting to Suppress Metastasis of Breast Cancer. Cancer Research, 2012, 72, 4818-4828.	0.9	63
48	RhoC GTPase Expression as a Potential Marker of Lymph Node Metastasis in Squamous Cell Carcinomas of the Head and Neck. Clinical Cancer Research, 2006, 12, 4485-4490.	7.0	61
49	Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Research and Treatment, 2015, 150, 9-18.	2.5	61
50	Enhancer of Zeste 2 as a Marker of Preneoplastic Progression in the Breast: Figure 1 Cancer Research, 2006, 66, 9352-9355.	0.9	60
51	Inhibition of CCN6 (Wnt-1-Induced Signaling Protein 3) Down-Regulates E-Cadherin in the Breast Epithelium through Induction of Snail and ZEB1. American Journal of Pathology, 2008, 172, 893-904.	3.8	60
52	Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma. Human Pathology, 2010, 41, 1205-1209.	2.0	60
53	CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer. Journal of Cell Science, 2011, 124, 1752-1758.	2.0	60
54	RhoC Impacts the Metastatic Potential and Abundance of Breast Cancer Stem Cells. PLoS ONE, 2012, 7, e40979.	2.5	60

#	Article	IF	CITATIONS
55	Pathologic Features of Breast Cancer Associated With Complete Response to Neoadjuvant Chemotherapy. American Journal of Surgical Pathology, 2005, 29, 354-358.	3.7	56
56	Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Research, 2005, 7, R1080-9.	5.0	56
57	Mesenchymal Stem/Stromal Cell Engulfment Reveals Metastatic Advantage in Breast Cancer. Cell Reports, 2019, 27, 3916-3926.e5.	6.4	56
58	p38γ Promotes Breast Cancer Cell Motility and Metastasis through Regulation of RhoC GTPase, Cytoskeletal Architecture, and a Novel Leading Edge Behavior. Cancer Research, 2011, 71, 6338-6349.	0.9	53
59	Increased risk for distant metastasis in patients with familial early-stage breast cancer and high EZH2 expression. Breast Cancer Research and Treatment, 2012, 132, 429-437.	2.5	52
60	α-Methylacyl-CoA Racemase Protein Expression Is Associated with the Degree of Differentiation in Breast Cancer Using Quantitative Image Analysis. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1418-1423.	2.5	51
61	A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer. Journal of Cell Communication and Signaling, 2019, 13, 129-143.	3.4	49
62	Metaplastic Carcinomas of the Breast: Diagnostic Challenges and New Translational Insights. Archives of Pathology and Laboratory Medicine, 2012, 136, 896-900.	2.5	47
63	Metaplastic Breast Carcinoma: Update on Histopathology and Molecular Alterations. Archives of Pathology and Laboratory Medicine, 2019, 143, 1492-1496.	2.5	47
64	EZH2 inhibition decreases p38 signaling and suppresses breast cancer motility and metastasis. Breast Cancer Research and Treatment, 2013, 138, 741-752.	2.5	44
65	Invasive breast carcinomas in Ghana: high frequency of high grade, basal-like histology and high EZH2 expression. Breast Cancer Research and Treatment, 2012, 135, 59-66.	2.5	43
66	Altered Expression of the Early Mitotic Checkpoint Protein, CHFR, in Breast Cancers: Implications for Tumor Suppression. Cancer Research, 2007, 67, 6064-6074.	0.9	42
67	Biomarkers in advanced larynx cancer. Laryngoscope, 2014, 124, 179-187.	2.0	40
68	Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer. Oncotarget, 2016, 7, 71151-71168.	1.8	40
69	Detection of Epstein-Barr Virus in Rapidly Growing Fibroadenomas of the Breast in Immunosuppressed Hosts. Modern Pathology, 2002, 15, 759-764.	5.5	39
70	Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ. Nature Communications, 2019, 10, 4182.	12.8	37
71	The Polycomb group protein Enhancer of Zeste 2: its links to DNA repair and breast cancer. Journal of Molecular Histology, 2006, 37, 219-223.	2.2	31
72	CCN6 (WISP3) as a New Regulator of the Epithelial Phenotype in Breast Cancer. Cells Tissues Organs, 2007. 185. 95-99.	2.3	31

#	Article	IF	CITATIONS
73	EZH2 and ALDH1 expression in ductal carcinoma in situ: Complex association with recurrence and progression to invasive breast cancer. Cell Cycle, 2013, 12, 2042-2050.	2.6	31
74	Blockade of CCN6 (WISP3) Activates Growth Factor–Independent Survival and Resistance to Anoikis in Human Mammary Epithelial Cells. Cancer Research, 2010, 70, 3340-3350.	0.9	29
75	Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression. Nature Communications, 2022, 13, .	12.8	29
76	Phosphorylation of EZH2 at T416 by CDK2 contributes to the malignancy of triple negative breast cancers. American Journal of Translational Research (discontinued), 2015, 7, 1009-20.	0.0	28
77	Characterizing Breast Cancer in a Population with Increased Prevalence of Triple-Negative Breast Cancer: Androgen Receptor and ALDH1 Expression in Ghanaian Women. Annals of Surgical Oncology, 2015, 22, 3831-3835.	1.5	27
78	Inflammatory breast cancer in North Africa: Comparison of clinical and molecular epidemiologic characteristics of patients from Egypt, Tunisia, and Morocco. Breast Disease, 2012, 33, 159-169.	0.8	25
79	Dual roles of CCN proteins in breast cancer progression. Journal of Cell Communication and Signaling, 2016, 10, 217-222.	3.4	23
80	The matricellular protein CCN6 (WISP3) decreases Notch1 and suppresses breast cancer initiating cells. Oncotarget, 2016, 7, 25180-25193.	1.8	23
81	Carcinoma of the Breast With Medullary-like Features: Diagnostic Challenges and Relationship With <i>BRCA1</i> and <i>EZH2</i> Functions. Archives of Pathology and Laboratory Medicine, 2009, 133, 1822-1825.	2.5	23
82	Breast Cancer and African Ancestry: Lessons Learned at the 10-Year Anniversary of the Ghana-Michigan Research Partnership and International Breast Registry. Journal of Global Oncology, 2016, 2, 302-310.	0.5	22
83	Molecular epidemiologic features of inflammatory breast cancer: a comparison between Egyptian and US patients. Breast Cancer Research and Treatment, 2008, 112, 141-147.	2.5	20
84	Tissue-based identification of stem cells and epithelial-to-mesenchymal transition in breast cancer. Human Pathology, 2013, 44, 1457-1464.	2.0	20
85	CCN6 regulates IGF2BP2Âand HMGA2 signaling in metaplastic carcinomas of the breast. Breast Cancer Research and Treatment, 2018, 172, 577-586.	2.5	20
86	Noncanonical Functions of the Polycomb Group Protein EZH2 in Breast Cancer. American Journal of Pathology, 2021, 191, 774-783.	3.8	20
87	Analysis of RhoC expression and lymphovascular emboli in inflammatory vs non-inflammatory breast cancers in Egyptian patients. Breast, 2009, 18, 55-59.	2.2	19
88	CCN6 Knockdown Disrupts Acinar Organization of Breast Cells in Three-dimensional Cultures through Up-regulation of Type III TGF-I2 Receptor. Neoplasia, 2012, 14, 1067-IN15.	5.3	19
89	A 3D matrix platform for the rapid generation of therapeutic anti-human carcinoma monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14882-14887.	7.1	18
90	Three Dimensional Cultures: A Tool To Study Normal Acinar Architecture vs. Malignant Transformation Of Breast Cells. Journal of Visualized Experiments, 2014, , .	0.3	17

#	Article	IF	CITATIONS
91	Fine-needle aspiration of breast carcinomas with prominent lymphocytic infiltrate. Diagnostic Cytopathology, 2000, 23, 39-42.	1.0	14
92	Matricellular CCN6 (WISP3) protein: a tumor suppressor for mammary metaplastic carcinomas. Journal of Cell Communication and Signaling, 2018, 12, 13-19.	3.4	14
93	Cancer Cell Invasion of Mammary Organoids with Basalâ€in Phenotype. Advanced Healthcare Materials, 2021, 10, e2000810.	7.6	13
94	Androgen Receptor and ALDH1 Expression Among Internationally Diverse Patient Populations. Journal of Global Oncology, 2018, 4, 1-8.	0.5	12
95	Membrane localization of insulin receptor substrate-2 (IRS-2) is associated with decreased overall survival in breast cancer. Breast Cancer Research and Treatment, 2011, 130, 759-772.	2.5	11
96	On how CCN6 suppresses breast cancer growth and invasion. Journal of Cell Communication and Signaling, 2012, 6, 5-10.	3.4	11
97	ESR1 and PGR polymorphisms are associated with estrogen and progesterone receptor expression in breast tumors. Physiological Genomics, 2016, 48, 688-698.	2.3	9
98	Atypical Ductal Lesions of the Breast: Criteria, Significance, and Laboratory Updates. Archives of Pathology and Laboratory Medicine, 2018, 142, 1182-1185.	2.5	8
99	Quantitative Image Analysis as an Adjunct to Manual Scoring of ER, PgR, and HER2 in Invasive Breast Carcinoma. American Journal of Clinical Pathology, 2022, 157, 899-907.	0.7	8
100	Stromal cells in phyllodes tumors of the breast are enriched for EZH2 and stem cell marker expression. Breast Cancer Research and Treatment, 2016, 158, 21-28.	2.5	7
101	Subcellular localization of EZH2 phosphorylated at T367 stratifies metaplastic breast carcinoma subtypes. Breast Cancer, 2021, 28, 496-505.	2.9	7
102	Carcinoma of the breast with medullary-like features: diagnostic challenges and relationship with BRCA1 and EZH2 functions. Archives of Pathology and Laboratory Medicine, 2009, 133, 1822-5.	2.5	7
103	Next-generation sequencing identifies recurrent copy number variations in invasive breast carcinomas from Ghana. Modern Pathology, 2020, 33, 1537-1545.	5.5	6
104	Characterization of type III TGFâ€Î² receptor expression in invasive breast carcinomas: a potential new marker and target for triple negative breast cancer. Journal of Cell Communication and Signaling, 2014, 8, 211-218.	3.4	4
105	Detection of Estrogen Receptor in Carcinomas of the Breast Using Automated Immunohistochemistry. Applied Immunohistochemistry & Molecular Morphology, 1999, 7, 103-107.	2.0	2
106	The matricellular protein CCN6 differentially regulates mitochondrial metabolism in normal epithelium and in metaplastic breast carcinomas. Journal of Cell Communication and Signaling, 2022, 16, 433-445.	3.4	2
107	CCN6 Regulates Breast Cancer Growth and Invasion Through Modulation of IGF Signaling and Epithelial to Mesenchymal Transition. , 2010, , 245-253.		1

108 WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. , 0, .

1

#	Article	IF	CITATIONS
109	Discoidin Domain Receptors in Normal Mammary Development and Breast Cancer Progression. , 2016, , 119-144.		0
110	The emerging role of CCN6 in breast cancer invasion. Cellscience, 2009, 6, 146-157.	0.3	0
111	Abstract P5-06-06: Hybrid cells generated by Mesenchymal Stem/Stromal Cell Engulfment enhance breast cancer metastasis upon Doxorubicin treatment in mouse model. Cancer Research, 2022, 82, P5-06-06-P5-06-06.	0.9	0
112	Depletion of CCN1/CYR61 reduces triple-negative/basal-like breast cancer aggressiveness American Journal of Cancer Research, 2022, 12, 839-851.	1.4	0