
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1529883/publications.pdf Version: 2024-02-01

REN FORRES

#	Article	IF	CITATIONS
1	Exploiting Endocytosis for Non-Spherical Nanoparticle Cellular Uptake. Nanomanufacturing, 2022, 2, 1-16.	1.8	16
2	Thermosensitive in situ hydrogels of rivastigmine-loaded lipid-based nanosystems for nose-to-brain delivery: characterisation, biocompatibility, and drug deposition studies. International Journal of Pharmaceutics, 2022, 620, 121720.	2.6	23
3	iBCS: 1. Principles and Framework of an Inhalation-Based Biopharmaceutics Classification System. Molecular Pharmaceutics, 2022, 19, 2032-2039.	2.3	13
4	iBCS: 2. Mechanistic Modeling of Pulmonary Availability of Inhaled Drugs versus Critical Product Attributes. Molecular Pharmaceutics, 2022, 19, 2040-2047.	2.3	12
5	Recommendations for crushing Circadin® (melatonin) tablets for safe and reliable delivery via pediatric nasogastric tubes. International Journal of Pharmaceutics, 2021, 594, 120151.	2.6	6
6	Intranasal insulin administration decreases cerebral blood flow in corticoâ€limbic regions: A neuropharmacological imaging study in normal and overweight males. Diabetes, Obesity and Metabolism, 2021, 23, 175-185.	2.2	14
7	Epithelial permeability and drug absorption in the lungs. , 2021, , 267-299.		3
8	Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 611-625.	1.5	27
9	Improving Drug Delivery for Alzheimer's Disease Through Nose-to-Brain Delivery Using Nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels. International Journal of Nanomedicine, 2021, Volume 16, 4373-4390.	3.3	46
10	Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. International Journal of Pharmaceutics, 2021, 604, 120731.	2.6	18
11	RespiCellTM: An Innovative Dissolution Apparatus for Inhaled Products. Pharmaceutics, 2021, 13, 1541.	2.0	6
12	In vitro Fourier transform infrared spectroscopic study of the effect of glycerol on the uptake of beclomethasone dipropionate in living respiratory cells. International Journal of Pharmaceutics, 2021, 609, 121118.	2.6	4
13	Solid-state epimerisation and disproportionation of pilocarpine HCl: Why we need a 5-stage approach to validate melting point measurements for heat-sensitive drugs. International Journal of Pharmaceutics, 2020, 574, 118869.	2.6	7
14	Development of new in vitro models of lung protease activity for investigating stability of inhaled biological therapies and drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 146, 64-72.	2.0	17
15	Fluticasone Particles Bind to Motile Respiratory Cilia: A Mechanism for Enhanced Lung and Systemic Exposure?. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2020, 34, 181-188.	0.7	2
16	A Cyclodextrinâ€Stabilized Spermineâ€Tagged Drug Triplex that Targets Theophylline to the Lungs Selectively in Respiratory Emergency. Advanced Therapeutics, 2020, 3, 2000153.	1.6	2
17	In vitro and in vivo antitubercular activity of benzothiazinone-loaded human serum albumin nanocarriers designed for inhalation. Journal of Controlled Release, 2020, 328, 339-349.	4.8	21
18	An in vitro bioassay for evaluating the effect of inhaled bronchodilators on airway smooth muscle. Pulmonary Pharmacology and Therapeutics, 2020, 63, 101943.	1.1	0

#	Article	IF	CITATIONS
19	Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters. Pharmaceutics, 2020, 12, 599.	2.0	61
20	Using Polar Ion-Pairs to Control Drug Delivery to the Airways of the Lungs. Molecular Pharmaceutics, 2020, 17, 1482-1490.	2.3	4
21	Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics, 2020, 12, 371-386.	1.0	45
22	A consensus research agenda for optimising nasal drug delivery. Expert Opinion on Drug Delivery, 2020, 17, 127-132.	2.4	16
23	The airways microbiome of individuals with asthma treated with high and low doses of inhaled corticosteroids. PLoS ONE, 2020, 15, e0244681.	1.1	14
24	Thermosensitive Nasal In Situ Gels of Lipid-Based Nanosystems to Improve the Treatment of Alzheimer's Disease. Proceedings (mdpi), 2020, 78, .	0.2	0
25	Comparison of Oral, Intranasal and Aerosol Administration of Amiodarone in Rats as a Model of Pulmonary Phospholipidosis. Pharmaceutics, 2019, 11, 345.	2.0	11
26	Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging. Journal of Controlled Release, 2019, 302, 140-147.	4.8	34
27	Mucus penetrating properties of soft, distensible lipid nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 76-84.	2.0	8
28	Imaging drugs, metabolites and biomarkers in rodent lung: a DESI MS strategy for the evaluation of drug-induced lipidosis. Analytical and Bioanalytical Chemistry, 2019, 411, 8023-8032.	1.9	24
29	Use of PBPK Modeling To Evaluate the Performance of Dissolv <i>lt</i> , a Biorelevant Dissolution Assay for Orally Inhaled Drug Products. Molecular Pharmaceutics, 2019, 16, 1245-1254.	2.3	18
30	Realising the potential of various inhaled airway challenge agents through improved delivery to the lungs. Pulmonary Pharmacology and Therapeutics, 2018, 49, 27-35.	1.1	3
31	Ion-Pairing with Spermine Targets Theophylline To the Lungs via the Polyamine Transport System. Molecular Pharmaceutics, 2018, 15, 861-870.	2.3	11
32	Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. European Journal of Pharmaceutical Sciences, 2018, 113, 41-52.	1.9	57
33	Glycerol Solvates DPPC Headgroups and Localizes in the Interfacial Regions of Model Pulmonary Interfaces Altering Bilayer Structure. Langmuir, 2018, 34, 6941-6954.	1.6	25
34	Design and development of a biorelevant simulated human lung fluid. Journal of Drug Delivery Science and Technology, 2018, 47, 485-491.	1.4	32
35	Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. Journal of Pharmaceutical Sciences, 2017, 106, 2234-2244.	1.6	22
36	A Biocompatible Synthetic Lung Fluid Based on Human Respiratory Tract Lining Fluid Composition. Pharmaceutical Research, 2017, 34, 2454-2465.	1.7	49

#	Article	IF	CITATIONS
37	Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis. Pharmaceutical Research, 2017, 34, 2466-2476.	1.7	14
38	Engineered sodium hyaluronate respirable dry powders for pulmonary drug delivery. International Journal of Pharmaceutics, 2017, 517, 286-295.	2.6	41
39	A Comparison of Drug Transport in Pulmonary Absorption Models: Isolated Perfused rat Lungs, Respiratory Epithelial Cell Lines and Primary Cell Culture. Pharmaceutical Research, 2017, 34, 2532-2540.	1.7	25
40	Differences in the coronal proteome acquired by particles depositing in the lungs of asthmatic versus healthy humans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2517-2521.	1.7	12
41	<i>In Silico</i> and <i>in Vitro</i> Screening for P-Glycoprotein Interaction with Tenofovir, Darunavir, and Dapivirine: An Antiretroviral Drug Combination for Topical Prevention of Colorectal HIV Transmission. Molecular Pharmaceutics, 2017, 14, 2660-2669.	2.3	13
42	Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks. Journal of Pharmaceutical Sciences, 2017, 106, 313-321.	1.6	20
43	Dissolution of Intact, Divided and Crushed Circadin Tablets: Prolonged vs. Immediate Release of Melatonin. Pharmaceutics, 2016, 8, 2.	2.0	24
44	Controlled drug release from lung-targeted nanocarriers via chemically mediated shell permeabilisation. International Journal of Pharmaceutics, 2016, 511, 1033-1041.	2.6	4
45	Drug Delivery Devices for Inhaled Medicines. Handbook of Experimental Pharmacology, 2016, 237, 265-280.	0.9	13
46	Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration. Journal of Controlled Release, 2016, 235, 24-33.	4.8	15
47	Enrichment of immunoregulatory proteins in the biomolecular corona of nanoparticles within human respiratory tract lining fluid. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1033-1043.	1.7	54
48	Naloxone without the needle â^' systematic review of candidate routes for non-injectable naloxone for opioid overdose reversal. Drug and Alcohol Dependence, 2016, 163, 16-23.	1.6	38
49	Amorphous Formulation and <i>in Vitro</i> Performance Testing of Instantly Disintegrating Buccal Tablets for the Emergency Delivery of Naloxone. Molecular Pharmaceutics, 2016, 13, 1688-1698.	2.3	13
50	Interaction of Formulation and Device Factors Determine the In Vitro Performance of Salbutamol Sulphate Dry Powders for Inhalation. Journal of Pharmaceutical Sciences, 2015, 104, 3861-3869.	1.6	7
51	In Vitro Testing for Orally Inhaled Products: Developments in Science-Based Regulatory Approaches. AAPS Journal, 2015, 17, 837-852.	2.2	48
52	Formulating powder–device combinations for salmeterol xinafoate dry powder inhalers. International Journal of Pharmaceutics, 2015, 490, 360-367.	2.6	21
53	Surface Chemistry of Photoluminescent F8BT Conjugated Polymer Nanoparticles Determines Protein Corona Formation and Internalization by Phagocytic Cells. Biomacromolecules, 2015, 16, 733-742.	2.6	36
54	In Vitro Multiparameter Assay Development Strategy toward Differentiating Macrophage Responses to Inhaled Medicines. Molecular Pharmaceutics, 2015, 12, 2675-2687.	2.3	15

#	Article	IF	CITATIONS
55	What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines?. Nanomedicine, 2015, 10, 343-345.	1.7	8
56	Formulation Pre-screening of Inhalation Powders Using Computational Atom–Atom Systematic Search Method. Molecular Pharmaceutics, 2015, 12, 18-33.	2.3	43
57	Triggered-release nanocapsules for drug delivery to the lungs. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 89-97.	1.7	20
58	Lost in translation: what is stopping inhaled nanomedicines from realizing their potential?. Therapeutic Delivery, 2014, 5, 757-761.	1.2	15
59	In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 83-89.	2.0	46
60	Challenges for inhaled drug discovery and development: Induced alveolar macrophage responses. Advanced Drug Delivery Reviews, 2014, 71, 15-33.	6.6	72
61	Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. International Journal of Pharmaceutics, 2014, 465, 42-51.	2.6	45
62	Evidence for the existence of powder sub-populations in micronized materials: Aerodynamic size-fractions of aerosolized powders possess distinct physicochemical properties Pharmaceutical Research, 2014, 31, 3251-3264.	1.7	9
63	Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. Journal of Controlled Release, 2014, 183, 94-104.	4.8	73
64	Rapid characterisation of the inherent dispersibility of respirable powders using dry dispersion laser diffraction. International Journal of Pharmaceutics, 2013, 447, 124-131.	2.6	49
65	The delivered dose: Applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages. Journal of Controlled Release, 2012, 162, 259-266.	4.8	66
66	Challenges in inhaled product development and opportunities for open innovation. Advanced Drug Delivery Reviews, 2011, 63, 69-87.	6.6	95
67	The effect of polyoxyethylene polymers on the transport of ranitidine in Caco-2 cell monolayers. International Journal of Pharmaceutics, 2011, 409, 164-168.	2.6	31
68	Lack of difference in pulmonary absorption of digoxin, a P-glycoprotein substrate, in <i>mdr1a</i> -deficient and <i>mdr1a</i> -competent mice. Journal of Pharmacy and Pharmacology, 2010, 60, 1305-1310.	1.2	5
69	In-vitro respiratory drug absorption models possess nominal functional P-glycoprotein activity. Journal of Pharmacy and Pharmacology, 2010, 61, 293-301.	1.2	38
70	Modelling the effects of microgravity on the permeability of air interface respiratory epithelial cell layers. Advances in Space Research, 2010, 46, 712-718.	1.2	4
71	Inflammatory Response and Barrier Properties of a New Alveolar Type 1-Like Cell Line (TT1). Pharmaceutical Research, 2009, 26, 1172-1180.	1.7	29
72	A poly(vinyl alcohol) nanoparticle platform for kinetic studies of inhaled particles. Inhalation Toxicology, 2009, 21, 631-640.	0.8	11

#	Article	IF	CITATIONS
73	In-vitro respiratory drug absorption models possess nominal functional P-glycoprotein activity. Journal of Pharmacy and Pharmacology, 2009, 61, 293-301.	1.2	14
74	Optimisation of the Caco-2 Permeability Assay Using Experimental Design Methodology. Pharmaceutical Research, 2008, 25, 1544-1551.	1.7	18
75	The Synthesis of High Molecular Weight Partially Hydrolysed Poly(vinyl alcohol) Grades Suitable for Nanoparticle Fabrication. Journal of Nanoscience and Nanotechnology, 2008, 8, 5739-5747.	0.9	20
76	The Isolated Perfused Lung for Drug Absorption Studies. , 2008, , 135-163.		9
77	Lack of difference in pulmonary absorption of digoxin, a P-glycoprotein substrate, in <l>mdr1a</l> -deficient and <l>mdr1a</l> -competent mice. Journal of Pharmacy and Pharmacology, 2008, 60, 1305-1310.	1.2	14
78	Paraben Transport and Metabolism in the Biomimetic Artificial Membrane Permeability Assay (BAMPA) and 3-Day and 21-Day Caco-2 Cell Systems. Journal of Biomolecular Screening, 2007, 12, 84-91.	2.6	32
79	Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. European Journal of Pharmaceutical Sciences, 2007, 31, 73-84.	1.9	200
80	Culture of Calu-3 Cells at the Air Interface Provides a Representative Model of the Airway Epithelial Barrier. Pharmaceutical Research, 2006, 23, 1482-1490.	1.7	305
81	Drug permeability in 16HBE140- airway cell layers correlates with absorption from the isolated perfused rat lung. European Journal of Pharmaceutical Sciences, 2005, 26, 414-420.	1.9	52
82	Human respiratory epithelial cell culture for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60, 193-205.	2.0	266
83	The human bronchial epithelial cell line 16HBE140â^' as a model system of the airways for studying drug transport. International Journal of Pharmaceutics, 2003, 257, 161-167.	2.6	112
84	Pulmonary Epithelial Cell Culture. , 2002, 188, 65-75.		3
85	Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharmaceutical Science & Technology Today, 2000, 3, 18-27.	0.7	126
86	Formulation of Inhaled Medicines: Effect of Delivery Vehicle on Immortalized Epithelial Cells. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2000, 13, 281-288.	1.2	11
87	Characterizing RAPIDTM platelet and leukocyte-rich plasma gels – an autologous, point-of-care medicine for diabetic foot ulcer treatment British Journal of Pharmacy, 0, , .	0.1	О