Paul A Altin

List of Publications by Citations

Source: https://exaly.com/author-pdf/1529869/paul-a-altin-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108 31,526 117 52 h-index g-index citations papers 6.9 117 39,243 4.92 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
108	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
107	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
106	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
105	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
104	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
103	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
102	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
101	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
100	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
99	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
98	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
97	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571
96	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
95	Properties of the Binary Black Hole Merger GW150914. <i>Physical Review Letters</i> , 2016 , 116, 241102	7.4	515
94	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
93	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454
92	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420

(2017-2017)

91	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413	
90	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393	
89	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381	
88	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328	
87	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253	
86	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209	
85	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. <i>Astrophysical Journal Letters</i> , 2020 , 900, L13	7.9	207	
84	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102	7.4	204	
83	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194	
82	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188	
81	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183	
80	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155	
79	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144	
78	Observation of Gravitational Waves from Two Neutron Star B lack Hole Coalescences. <i>Astrophysical Journal Letters</i> , 2021 , 915, L5	7.9	142	
77	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137	
76	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133	
75	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130	
74	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. Astrophysical Journal Letters, 2017 , 850, L39	7.9	127	

73	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
72	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
71	Bright solitonic matter-wave interferometer. <i>Physical Review Letters</i> , 2014 , 113, 013002	7.4	101
70	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
69	Precision atomic gravimeter based on Bragg diffraction. New Journal of Physics, 2013, 15, 023009	2.9	81
68	Cold-atom gravimetry with a Bose-Einstein condensate. <i>Physical Review A</i> , 2011 , 84,	2.6	81
67	A guide to LIGON irgo detector noise and extraction of transient gravitational-wave signals. <i>Classical and Quantum Gravity</i> , 2020 , 37, 055002	3.3	78
66	Atom lasers: Production, properties and prospects for precision inertial measurement. <i>Physics Reports</i> , 2013 , 529, 265-296	27.7	75
65	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
64	Model comparison from LIGON irgo data on GW170817 binary components and consequences for the merger remnant. <i>Classical and Quantum Gravity</i> , 2020 , 37, 045006	3.3	69
63	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
62	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
61	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015 2 017 LIGO Data. <i>Astrophysical Journal</i> , 2019 , 879, 10	4.7	63
60	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
59	11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium. <i>Optics Express</i> , 2012 , 20, 8915-9	3.3	62
58	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
57	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
56	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series 2016, 227, 14	8	52

55	Antiresonance phase shift in strongly coupled cavity QED. <i>Physical Review Letters</i> , 2014 , 112, 043601	7.4	51	
54	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50	
53	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50	
52	Coherent 455 nm beam production in a cesium vapor. <i>Optics Letters</i> , 2009 , 34, 2321-3	3	50	
51	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49	
50	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49	
49	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46	
48	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45	
47	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45	
46	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42	
45	Gradient echo memory in an ultra-high optical depth cold atomic ensemble. <i>New Journal of Physics</i> , 2013 , 15, 085027	2.9	41	
44	SUPPLEMENT: IOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[2016, ApJL, 826, L13). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38	
43	Collapse and three-body loss in a 85Rb Bose-Einstein condensate. Physical Review A, 2011, 84,	2.6	37	
42	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36	
41	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35	
40	85Rb tunable-interaction Bose-Einstein condensate machine. <i>Review of Scientific Instruments</i> , 2010 , 81, 063103	1.7	33	
39	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32	
38	Optically guided linear Mach-Zehnder atom interferometer. <i>Physical Review A</i> , 2013 , 87,	2.6	30	

37	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. <i>Astrophysical Journal</i> , 2019 , 870, 134	4.7	23
36	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22
35	A Bose-condensed, simultaneous dual-species Mach Zehnder atom interferometer. <i>New Journal of Physics</i> , 2014 , 16, 073035	2.9	22
34	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22
33	Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup. <i>Physical Review A</i> , 2010 , 81,	2.6	21
32	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21
31	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
30	Optically trapped atom interferometry using the clock transition of large87Rb Bose E instein condensates. <i>New Journal of Physics</i> , 2011 , 13, 065020	2.9	19
29	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17
28	Observation of Squeezed Light in the 2 h Region. <i>Physical Review Letters</i> , 2018 , 120, 203603	7.4	17
27	Generation and control of frequency-dependent squeezing via Einstein Podolsky Rosen entanglement. <i>Nature Photonics</i> , 2020 , 14, 223-226	33.9	13
26	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. <i>Astrophysical Journal Letters</i> , 2021 , 913, L27	7.9	13
25	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
24	Tunable narrow-linewidth laser at 2 th wavelength for gravitational wave detector research. <i>Optics Express</i> , 2020 , 28, 3280-3288	3.3	11
23	Experimental comparison of Raman and rf outcouplers for high-flux atom lasers. <i>Physical Review A</i> , 2010 , 81,	2.6	10
22	A two-state Raman coupler for coherent atom optics. <i>Optics Express</i> , 2009 , 17, 2319-25	3.3	10
21	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 921, 80	4.7	10
20	A robust single-beam optical trap for a gram-scale mechanical oscillator. <i>Scientific Reports</i> , 2017 , 7, 145	46 .9	9

(2020-2009)

19	Ramsey interferometry with an atom laser. <i>Optics Express</i> , 2009 , 17, 20661-8	3.3	9
18	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9
17	Optically trapped atom interferometry using the clock transition of large87Rb BoseEinstein condensates. <i>New Journal of Physics</i> , 2011 , 13, 119401	2.9	8
16	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537日910. <i>Astrophysical Journal</i> , 2021 , 922, 71	4.7	8
15	Measurement of inelastic losses in a sample of ultracold Rb85. Physical Review A, 2010, 81,	2.6	7
14	Quantum enhanced kHz gravitational wave detector with internal squeezing. <i>Classical and Quantum Gravity</i> , 2020 , 37, 07LT02	3.3	6
13	Squeezed vacuum phase control at 2 h. Optics Letters, 2019 , 44, 5386-5389	3	6
12	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGON rigo Run O3a. <i>Astrophysical Journal</i> , 2021 , 915, 86	4.7	6
11	Frequency dependence of thermal noise in gram-scale cantilever flexures. <i>Physical Review D</i> , 2015 , 92,	4.9	5
10	An ultra-high optical depth cold atomic ensemble for quantum memories. <i>Journal of Physics:</i> Conference Series, 2013 , 467, 012009	0.3	4
9	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. <i>Astronomy and Astrophysics</i> ,	5.1	4
8	Interferometric wavefront sensing with a single diode using spatial light modulation. <i>Applied Optics</i> , 2017 , 56, 2353-2358	0.2	4
7	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO Virgo Third Observing Run. <i>Astrophysical Journal</i> , 2021 , 923, 14	4.7	4
6	Feasibility of squeezing measurements with cavity-based atom detection. <i>Physical Review A</i> , 2012 , 86,	2.6	2
5	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
4	Continuous parametric feedback cooling of a single atom in an optical cavity. <i>Physical Review A</i> , 2018 , 97,	2.6	1
3	From apples to atoms: measuring gravity with ultra cold atomic test masses. <i>Preview</i> , 2013 , 2013, 30-33	0.2	1
2	Automatic mode-matching of a Fabry-Pfot cavity with a single photodiode and spatial light modulation. <i>Journal of Optics (United Kingdom)</i> , 2020 , 22, 105605	1.7	1

Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO Virgo Run O3b. Astrophysical Journal, 2022, 928, 186

4.7 1