Peter Pimpl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/15297/publications.pdf Version: 2024-02-01

DETED DIMOL

#	Article	IF	CITATIONS
1	Plant membrane trafficking is coming of age. Seminars in Cell and Developmental Biology, 2018, 80, 83-84.	2.3	2
2	Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nature Communications, 2018, 9, 643.	5.8	35
3	A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis. PLoS Genetics, 2018, 14, e1007795.	1.5	28
4	Analysis of Nanobody–Epitope Interactions in Living Cells via Quantitative Protein Transport Assays. Methods in Molecular Biology, 2017, 1662, 171-182.	0.4	5
5	In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM). Methods in Molecular Biology, 2017, 1662, 159-170.	0.4	9
6	Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. Nature Plants, 2016, 2, 16017.	4.7	66
7	Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. Protoplasma, 2014, 251, 247-264.	1.0	25
8	Clathrin and post-Golgi trafficking: a very complicated issue. Trends in Plant Science, 2014, 19, 134-139.	4.3	83
9	Organelle pH in the Arabidopsis Endomembrane System. Molecular Plant, 2013, 6, 1419-1437.	3.9	310
10	Trying to make sense of retromer. Trends in Plant Science, 2012, 17, 431-439.	4.3	44
11	Ubiquitin initiates sorting of Colgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biology, 2012, 12, 164.	1.6	62
12	Multivesicular Bodies Mature from the <i>Trans</i> -Golgi Network/Early Endosome in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3463-3481.	3.1	236
13	Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER–Golgi–TGN–PM pathway. Plant Journal, 2011, 65, 882-896.	2.8	67
14	Retromer recycles vacuolar sorting receptors from the <i>trans</i> -Golgi network. Plant Journal, 2010, 61, 107-121.	2.8	115
15	Sorting of plant vacuolar proteins is initiated in the ER. Plant Journal, 2010, 62, 601-614.	2.8	79
16	The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana. Plant Journal, 2010, 64, no-no.	2.8	59
17	Coats of endosomal protein sorting: retromer and ESCRT. Current Opinion in Plant Biology, 2009, 12, 670-676.	3.5	35
18	Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma, 2009, 236, 73-84.	1.0	24

Peter Pimpl

#	Article	IF	CITATIONS
19	BFAâ€induced compartments from the Golgi apparatus and <i>trans</i> â€Golgi network/early endosome are distinct in plant cells. Plant Journal, 2009, 60, 865-881.	2.8	107
20	<i>In vivo</i> Trafficking and Localization of p24 Proteins in Plant Cells. Traffic, 2008, 9, 770-785.	1.3	74
21	Golgi-Mediated Vacuolar Sorting of the Endoplasmic Reticulum Chaperone BiP May Play an Active Role in Quality Control within the Secretory Pathway. Plant Cell, 2006, 18, 198-211.	3.1	99
22	The GTPase ARF1p Controls the Sequence-Specific Vacuolar Sorting Route to the Lytic Vacuole. Plant Cell, 2003, 15, 1242-1256.	3.1	111
23	Reevaluation of the Effects of Brefeldin A on Plant Cells Using Tobacco Bright Yellow 2 Cells Expressing Golgi-Targeted Green Fluorescent Protein and COPI Antisera. Plant Cell, 2002, 14, 237-261.	3.1	329
24	Protein-protein interactions in the secretory pathway, a growing demand for experimental approaches in vivo. Plant Molecular Biology, 2002, 50, 887-902.	2.0	7
25	Secretory Bulk Flow of Soluble Proteins Is Efficient and COPII Dependent. Plant Cell, 2001, 13, 2005.	3.1	1
26	A Vacuolar Sorting Domain May Also Influence the Way in Which Proteins Leave the Endoplasmic Reticulum. Plant Cell, 2001, 13, 2021-2032.	3.1	87
27	Secretory Bulk Flow of Soluble Proteins Is Efficient and COPII Dependent. Plant Cell, 2001, 13, 2005-2020.	3.1	136
28	Secretory Bulk Flow of Soluble Proteins Is Efficient and COPII Dependent. Plant Cell, 2001, 13, 2005-2020.	3.1	107
29	ER Retention of Soluble Proteins: Retrieval, Retention, or Both?. Plant Cell, 2000, 12, 1517-1519.	3.1	12
30	In situ Localization and in vitro Induction of Plant COPI-Coated Vesicles. Plant Cell, 2000, 12, 2219.	3.1	3
31	ER Retention of Soluble Proteins: Retrieval, Retention, or Both?. Plant Cell, 2000, 12, 1517.	3.1	0
32	In Situ Localization and in Vitro Induction of Plant COPI-Coated Vesicles. Plant Cell, 2000, 12, 2219-2235.	3.1	188
33	Arabidopsis Sec21p and Sec23p Homologs. Probable Coat Proteins of Plant COP-Coated Vesicles1. Plant Physiology, 1999, 119, 1437-1446.	2.3	89