Randy P Carney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1529664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 2014, 6, 7052.	5.6	383
2	Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. Journal of Extracellular Vesicles, 2015, 4, 28533.	12.2	240
3	Effect of Particle Diameter and Surface Composition on the Spontaneous Fusion of Monolayer-Protected Gold Nanoparticles with Lipid Bilayers. Nano Letters, 2013, 13, 4060-4067.	9.1	236
4	Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nature Communications, 2011, 2, 335.	12.8	201
5	3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale, 2015, 7, 9290-9297.	5.6	138
6	Effects of Surface Compositional and Structural Heterogeneity on Nanoparticle–Protein Interactions: Different Protein Configurations. ACS Nano, 2014, 8, 5402-5412.	14.6	131
7	Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale, 2013, 5, 6928.	5.6	113
8	Size Limitations for the Formation of Ordered Striped Nanoparticles. Journal of the American Chemical Society, 2008, 130, 798-799.	13.7	100
9	Enhancing Radiotherapy by Lipid Nanocapsule-Mediated Delivery of Amphiphilic Gold Nanoparticles to Intracellular Membranes. ACS Nano, 2014, 8, 8992-9002.	14.6	97
10	Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers. ACS Nano, 2013, 7, 932-942.	14.6	89
11	Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nature Communications, 2016, 7, 13520.	12.8	86
12	Direct Investigation of Intracellular Presence of Gold Nanoparticles <i>via</i> Photothermal Heterodyne Imaging. ACS Nano, 2011, 5, 2587-2592.	14.6	84
13	Nanoplasmonic Approaches for Sensitive Detection and Molecular Characterization of Extracellular Vesicles. Frontiers in Chemistry, 2019, 7, 279.	3.6	73
14	Oligonucleotide Delivery by Cellâ€Penetrating "Striped―Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 12312-12315.	13.8	71
15	Synthesis and Characterization of Janus Gold Nanoparticles. Advanced Materials, 2012, 24, 3857-3863.	21.0	71
16	Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations. Analytical Chemistry, 2017, 89, 5357-5363.	6.5	69
17	Tetraspanins are unevenly distributed across single extracellular vesicles and bias sensitivity to multiplexed cancer biomarkers. Journal of Nanobiotechnology, 2021, 19, 250.	9.1	57
18	Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes. Nanoscale, 2015, 7, 11420-11432.	5.6	51

RANDY P CARNEY

#	Article	IF	CITATIONS
19	Neuroprotective effect of placentaâ€derived mesenchymal stromal cells: role of exosomes. FASEB Journal, 2019, 33, 5836-5849.	0.5	49
20	<scp>SERS</scp> analysis of selectively captured exosomes using an integrinâ€specific peptide ligand. Journal of Raman Spectroscopy, 2017, 48, 1771-1776.	2.5	46
21	Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid Biopsy Diagnostics Using Extracellular Vesicles. ACS Sensors, 2020, 5, 2820-2833.	7.8	45
22	Dynamic Cellular Uptake of Mixed-Monolayer Protected Nanoparticles. Biointerphases, 2012, 7, 17.	1.6	36
23	Structure–Property Relationships of Amphiphilic Nanoparticles That Penetrate or Fuse Lipid Membranes. Bioconjugate Chemistry, 2018, 29, 1131-1140.	3.6	36
24	Targeting Galectin-1 Impairs Castration-Resistant Prostate Cancer Progression and Invasion. Clinical Cancer Research, 2018, 24, 4319-4331.	7.0	36
25	Targeting Tumorâ€Associated Exosomes with Integrinâ€Binding Peptides. Advanced Biology, 2017, 1, 1600038.	3.0	33
26	Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials, 2018, 161, 203-215.	11.4	33
27	Artificial Surfaceâ€Modified Si ₃ N ₄ Nanopores for Single Surfaceâ€Modified Gold Nanoparticle Scanning. Small, 2011, 7, 455-459.	10.0	31
28	Surface enhanced Raman scattering of extracellular vesicles for cancer diagnostics despite isolation dependent lipoprotein contamination. Nanoscale, 2021, 13, 14760-14776.	5.6	31
29	Thermodynamic Study of the Reactivity of the Two Topological Point Defects Present in Mixed Selfâ€Assembled Monolayers on Gold Nanoparticles. Advanced Materials, 2008, 20, 4243-4247.	21.0	28
30	Colloidal Stability of Self-Assembled Monolayer-Coated Gold Nanoparticles: The Effects of Surface Compositional and Structural Heterogeneity. Langmuir, 2013, 29, 11560-11566.	3.5	28
31	High-affinity peptide ligand LXY30 for targeting α3β1 integrin in non-small cell lung cancer. Journal of Hematology and Oncology, 2019, 12, 56.	17.0	28
32	Rotatable Aggregationâ€Inducedâ€Emission/Aggregationâ€Causedâ€Quenching Ratio Strategy for Realâ€Time Tracking Nanoparticle Dynamics. Advanced Functional Materials, 2020, 30, 1910348.	14.9	28
33	Combinatorial Library Screening with Liposomes for Discovery of Membrane Active Peptides. ACS Combinatorial Science, 2017, 19, 299-307.	3.8	25
34	Image-guided photo-therapeutic nanoporphyrin synergized HSP90 inhibitor in patient-derived xenograft bladder cancer model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 789-799.	3.3	25
35	Deciphering the metabolic role of AMPK in cancer multi-drug resistance. Seminars in Cancer Biology, 2019, 56, 56-71.	9.6	25
36	Sensing Single Mixed-Monolayer Protected Gold Nanoparticles by the α-Hemolysin Nanopore. Analytical Chemistry, 2013, 85, 10149-10158.	6.5	23

RANDY P CARNEY

#	Article	IF	CITATIONS
37	A Plug-and-Play, Drug-on-Pillar Platform for Combination Drug Screening Implemented by Microfluidic Adaptive Printing. Analytical Chemistry, 2018, 90, 13969-13977.	6.5	21
38	Erythrocyte Incubation as a Method for Free-Dye Presence Determination in Fluorescently Labeled Nanoparticles. Molecular Pharmaceutics, 2013, 10, 875-882.	4.6	20
39	Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent. Bioconjugate Chemistry, 2017, 28, 161-170.	3.6	20
40	Microfluidic Print-to-Synthesis Platform for Efficient Preparation and Screening of Combinatorial Peptide Microarrays. Analytical Chemistry, 2018, 90, 5833-5840.	6.5	18
41	Galectin-1 inhibition induces cell apoptosis through dual suppression of CXCR4 and Ras pathways in human malignant peripheral nerve sheath tumors. Neuro-Oncology, 2019, 21, 1389-1400.	1.2	17
42	Identification of amyloid beta in small extracellular vesicles <i>via</i> Raman spectroscopy. Nanoscale Advances, 2021, 3, 4119-4132.	4.6	13
43	A silica-based magnetic platform decorated with mixed ligand gold nanoparticles: a recyclable catalyst for esterification reactions. Chemical Communications, 2016, 52, 5573-5576.	4.1	11
44	Machine Learning-Assisted Sampling of Surfance-Enhanced Raman Scattering (SERS) Substrates Improve Data Collection Efficiency. Applied Spectroscopy, 2022, 76, 485-495.	2.2	11
45	Discovery and mechanistic characterization of a structurally-unique membrane active peptide. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183394.	2.6	5
46	Isolation and Characterization of Monodisperse Core–Shell Nanoparticle Fractions. Langmuir, 2015, 31, 11179-11185.	3.5	4
47	Homogenous high enhancement surface-enhanced Raman scattering (SERS) substrates by simple hierarchical tuning of gold nanofoams. Colloids and Interface Science Communications, 2022, 47, 100596.	4.1	4
48	Selective Localization of Hierarchically Assembled Particles to Plasma Membranes of Living Cells. Small Methods, 2019, 3, 1800408.	8.6	2
49	Microfluidic print-to-synthesis enabled combinatorial peptide microarray for cancer targeting. , 2017, , .		1
50	Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation). , 2016, , .		0
51	Biosensors: Targeting Tumorâ€Associated Exosomes with Integrinâ€Binding Peptides (Adv. Biosys. 5/2017). Advanced Biology, 2017, 1, .	3.0	0
52	Surface enhanced Raman scattering (SERS) nanoparticles for rapid chemical analysis of tumor-associated extracellular vesicles (EVs). , 2021, , .		0