Sudi Mungkasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/152963/publications.pdf

Version: 2024-02-01

	1040018	1125717
342	9	13
citations	h-index	g-index
0.6	0.6	125
86	86	135
docs citations	times ranked	citing authors
	citations 86	342 9 citations h-index 86 86

#	Article	IF	CITATIONS
1	A fast and accurate analytical-numerical method for solving the prey-predator model. Journal of Interdisciplinary Mathematics, 2022, 25, 273-283.	0.7	O
2	An order verification method for truncated asymptotic expansion solutions to initial value problems. AEJ - Alexandria Engineering Journal, 2022, 61, 175-184.	6.4	0
3	Numerical verification of the orders of accuracy of truncated asymptotic expansion solutions to the van der Pol equation. Journal of Mathematical Chemistry, 2021, 59, 216-223.	1.5	5
4	Variational iteration and successive approximation methods for a SIR epidemic model with constant vaccination strategy. Applied Mathematical Modelling, 2021, 90, 1-10.	4.2	32
5	Comparison of different numerical schemes for 1D conservation laws. Journal of Interdisciplinary Mathematics, 2021, 24, 537-552.	0.7	0
6	Fourth order Runge-Kutta method for solving a mathematical model of the spread of HIV-AIDS. AIP Conference Proceedings, 2021, , .	0.4	2
7	Euler's and Heun's numerical solutions to a mathematical model of the spread of COVID-19. AIP Conference Proceedings, 2021, , .	0.4	3
8	PyPLIF HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors. Molecules, 2021, 26, 2452.	3.8	1
9	The Euler, Heun, and Fourth Order Runge-Kutta Solutions to SEIR Model for the Spread of Meningitis Disease. Mathline Jurnal Matematika Dan Pendidikan Matematika, 2021, 6, 140-153.	0.1	3
10	KEAKURATAN METODE DEKOMPOSISI ADOMIAN UNTUK MASALAH NILAI AWAL YANG PENYELESAIAN EKSAKNYA MEMUAT TITIK SINGULAR. Teorema Teori Dan Riset Matematika, 2021, 6, .	0.1	0
11	VERIFIKASI TINGKAT KEAKURATAN BEBERAPA METODE INTEGRASI NUMERIK FUNGSI ATAS SATU PEUBAH BEBAS. Jurnal Silogisme Kajian Ilmu Matematika Dan Pembelajarannya, 2021, 6, 58.	0.1	0
12	PyPLIF HIPPOS: A Molecular Interaction Fingerprinting Tool for Docking Results of AutoDock Vina and PLANTS. Journal of Chemical Information and Modeling, 2020, 60, 3697-3702.	5.4	14
13	Weak Local Residuals as Smoothness Indicators in Adaptive Mesh Methods for Shallow Water Flows. Symmetry, 2020, 12, 345.	2.2	1
14	Application of numerical integration in solving a reverse osmosis model. AIP Conference Proceedings, 2019, , .	0.4	3
15	Performance of the Runge-Kutta methods in solving a mathematical model for the spread of dengue fever disease. AIP Conference Proceedings, 2019, , .	0.4	3
16	Nonstandard finite difference methods for solving models of population dynamics. AIP Conference Proceedings, 2019, , .	0.4	0
17	NUMERICAL ENTROPY PRODUCTION AS SMOOTHNESS INDICATOR FOR SHALLOW WATER EQUATIONS. ANZIAM Journal, 2019, 61, 398-415.	0.2	O

Formal expansion method for solving an electrical circuit model. Telkomnika (Telecommunication) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

#	Article	IF	Citations
19	Development of a Graphical User Interface Application to Identify Marginal and Potent Ligands for Estrogen Receptor Alpha. Indonesian Journal of Chemistry, 2019, 19, 531.	0.8	1
20	The influence of welding speed conditions of GMAW on mechanical properties of 316L austenitic stainless steel. MATEC Web of Conferences, 2018, 159, 02009.	0.2	4
21	A finite volume method for solving the gravity wave-model equations. Journal of Physics: Conference Series, 2018, 1090, 012047.	0.4	0
22	Finite Difference Methods for Simulation of Water Waves Generated by Moving Topography. Journal of Physics: Conference Series, 2018, 1090, 012016.	0.4	0
23	A simple finite volume scheme for subcritical shallow water flows on staggered grids. AIP Conference Proceedings, 2018, , .	0.4	0
24	Variational Iteration Solution to the Gravity Wave-Model Equations. Journal of Physics: Conference Series, 2018, 1007, 012071.	0.4	0
25	Numerical solutions to a parabolic model of two-layer fluids. Journal of Physics: Conference Series, 2018, 1090, 012050.	0.4	0
26	Performance of the Lax-Wendroff finite volume method for solving the gravity wave-model equations. Journal of Physics: Conference Series, 2018, 1007, 012008.	0.4	0
27	Variational estimate method for solving autonomous ordinary differential equations. Journal of Physics: Conference Series, 2018, 1007, 012011.	0.4	0
28	Adomian decomposition method for solving initial value problems in vibration models. MATEC Web of Conferences, 2018, 159, 02007.	0.2	1
29	Numerical Simulation of Blood Flow in Human Artery Using (A, Q) and (A, u) Systems. IOP Conference Series: Materials Science and Engineering, 2018, 325, 012014.	0.6	1
30	A STAGGERED METHOD FOR THE SHALLOW WATER EQUATIONS INVOLVING VARYING CHANNEL WIDTH AND TOPOGRAPHY. International Journal for Multiscale Computational Engineering, 2018, 16, 231-244.	1.2	16
31	A modified Newton's method used to solve a steady flow problem based on the shallow water equations. AIP Conference Proceedings, 2017, , .	0.4	2
32	Runge-Kutta and rational block methods for solving initial value problems. Journal of Physics: Conference Series, 2017, 795, 012040.	0.4	2
33	Variational iteration method for solving the population dynamics model of two species. Journal of Physics: Conference Series, 2017, 795, 012044.	0.4	1
34	Adomian decomposition method used to solve the gravity wave equations. AIP Conference Proceedings, 2017, , .	0.4	4
35	Finite volume numerical solution to a blood flow problem in human artery. Journal of Physics: Conference Series, 2017, 795, 012042.	0.4	0
36	Adomian decomposition method for solving the population dynamics model of two species. Journal of Physics: Conference Series, 2017, 795, 012045.	0.4	1

#	Article	IF	CITATIONS
37	Jin–Xin relaxation method for solving a traffic flow problem in one dimension. Journal of Physics: Conference Series, 2017, 795, 012041.	0.4	0
38	A staggered grid finite difference method for solving the gravity wave-model equations. Journal of Physics: Conference Series, 2017, 909, 012046.	0.4	2
39	Finite difference and Runge–Kutta methods for solving vibration problems. Journal of Physics: Conference Series, 2017, 909, 012044.	0.4	2
40	A staggered grid Jin–Xin relaxation method used to solve the Burgers equation. Journal of Physics: Conference Series, 2017, 909, 012042.	0.4	0
41	Reconstruction of initial conditions of the Burgers equation in conservation law problems. Journal of Physics: Conference Series, 2017, 909, 012045.	0.4	0
42	A staggered grid finite difference method for solving the elastic wave equations. Journal of Physics: Conference Series, 2017, 909, 012047.	0.4	5
43	Jin–Xin relaxation method used to solve the one-dimensional inviscid Burgers equation. Journal of Physics: Conference Series, 2017, 856, 012007.	0.4	3
44	Adomian decomposition method used to solve the one-dimensional acoustic equations. Journal of Physics: Conference Series, 2017, 856, 012003.	0.4	3
45	Performance of parallel computation using CUDA for solving the one-dimensional elasticity equations. Journal of Physics: Conference Series, 2017, 801, 012080.	0.4	2
46	A simple but accurate explicit finite difference method for the advection-diffusion equation. Journal of Physics: Conference Series, 2017, 909, 012038.	0.4	11
47	Variational iteration method used to solve the one-dimensional acoustic equations. Journal of Physics: Conference Series, 2017, 856, 012010.	0.4	3
48	Conservative formulation of unsteady pipe-flow model for water in its liquid form. Journal of Physics: Conference Series, 2017, 856, 012014.	0.4	1
49	Jin–Xin relaxation solution to the spatially-varying Burgers equation in one dimension. Journal of Physics: Conference Series, 2017, 795, 012043.	0.4	0
50	Parallel computations using a cluster of workstations to simulate elasticity problems. Journal of Physics: Conference Series, 2016, 776, 012081.	0.4	1
51	Steady flow over an arbitrary obstruction based on the gravity wave equations. Journal of Physics: Conference Series, 2016, 776, 012080.	0.4	1
52	Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids. Advances in Mathematical Physics, 2016, 2016, 1-7.	0.8	9
53	A smoothness indicator for numerical solutions to the Ripa model. Journal of Physics: Conference Series, 2016, 693, 012011.	0.4	5
54	2015 International Conference on Mathematics, its Applications, and Mathematics Education. Journal of Physics: Conference Series, 2016, 693, 011001.	0.4	0

#	Article	IF	Citations
55	A modified Mohapatraâ€"Chaudhry two-four finite difference scheme for the shallow water equations. Journal of Physics: Conference Series, 2016, 693, 012012.	0.4	3
56	Structural dynamic modification using matrix perturbation for vibrations without friction. Journal of Physics: Conference Series, 2016, 776, 012078.	0.4	0
57	On the relevance of a variational iteration method for solving the shallow water equations. AIP Conference Proceedings, 2016, , .	0.4	7
58	Numerical solution to the shallow water equations using explicit and implicit schemes. AIP Conference Proceedings, 2016, , .	0.4	3
59	Numerical solution to the linear acoustics equations. AIP Conference Proceedings, 2016, , .	0.4	4
60	Variational iteration method used to solve steady state problems of shallow water flows. AIP Conference Proceedings, 2016, , .	0.4	4
61	Analytical solution of Boussinesq equations as a model of wave generation. AIP Conference Proceedings, 2016, , .	0.4	3
62	Adomian decomposition method used to solve the shallow water equations. AIP Conference Proceedings, 2016 , , .	0.4	5
63	An adaptive mesh finite volume method for the Euler equations of gas dynamics. AIP Conference Proceedings, 2016, , .	0.4	4
64	FINITE VOLUME NUMERICAL SOLVERS FOR NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA. International Journal for Multiscale Computational Engineering, 2016, 14, 479-488.	1.2	10
65	NUMERICAL SOLUTION OF WAVES GENERATED BY FLOW OVER A BUMP. Far East Journal of Mathematical Sciences, 2016, 100, 1717-1726.	0.0	2
66	Some advantages of implementing an adaptive moving mesh for the solution to the Burgers equation. IOP Conference Series: Materials Science and Engineering, 2015, 78, 012031.	0.6	5
67	An Accurate Smoothness Indicator for Shallow Water Flows along Channels with Varying Width. Applied Mechanics and Materials, 2015, 771, 157-160.	0.2	3
68	Fast and Efficient Parallel Computations Using a Cluster of Workstations to Simulate Flood Flows. Communications in Computer and Information Science, 2015, , 469-477.	0.5	5
69	NUMERICAL ENTROPY PRODUCTION OF THE ONE-AND-A-HALF-DIMENSIONAL SHALLOW WATER EQUATIONS WITH TOPOGRAPHY. Journal of the Indonesian Mathematical Society, 2015, 21, .	0.1	3
70	Weak local residuals as smoothness indicators for the shallow water equations. Applied Mathematics Letters, $2014, 30, 51-55$.	2.7	12
71	Shock wave propagation of circular dam break problems. Journal of Physics: Conference Series, 2014, 539, 012022.	0.4	2
72	WEAK LOCAL RESIDUALS IN AN ADAPTIVE FINITE VOLUME METHOD FOR ONE-DIMENSIONAL SHALLOW WATER EQUATIONS. Journal of the Indonesian Mathematical Society, 2014, 20, .	0.1	3

#	Article	IF	Citations
73	A STUDY OF WELL-BALANCED FINITE VOLUME METHODS AND REFINEMENT INDICATORS FOR THE SHALLOW WATER EQUATIONS. Bulletin of the Australian Mathematical Society, 2013, 88, 351-352.	0.5	15
74	Validation of ANUGA hydraulic model using exact solutions to shallow water wave problems. Journal of Physics: Conference Series, 2013, 423, 012029.	0.4	21
75	Analytical Solutions Involving Shock Waves for Testing Debris Avalanche Numerical Models. Pure and Applied Geophysics, 2012, 169, 1847-1858.	1.9	14
76	Approximations of the Carrier–Greenspan periodic solution to the shallow water wave equations for flows on a sloping beach. International Journal for Numerical Methods in Fluids, 2012, 69, 763-780.	1.6	15
77	Numerical Solutions to Fast Transient Pipe Flow Problems. Advanced Materials Research, 0, 1123, 27-30.	0.3	1
78	The significance of spatial reconstruction in finite volume methods for the shallow water equations. Applied Mathematical Sciences, 0, 8, 1411-1420.	0.1	2
79	A Boussinesq-type model for waves generated by flow over a bump. Applied Mathematical Sciences, 0, 8, 5293-5302.	0.1	4
80	Internal monochromatic wave propagating over two bars. Applied Mathematical Sciences, 0, 9, 4479-4488.	0.1	4
81	On the best quantity reconstructions for a well balanced finite volume method used to solve the shallow water wave equations with a wet/dry interface. ANZIAM Journal, 0, 51, 48.	0.0	12
82	A new analytical solution for testing debris avalanche numerical models. ANZIAM Journal, 0, 51, 349.	0.0	6
83	Numerical entropy production for shallow water flows. ANZIAM Journal, 0, 51, 1.	0.0	11
84	Behaviour of the numerical entropy production of the one-and-a-half-dimensional shallow water equations. ANZIAM Journal, 0, 54, 18.	0.0	9
85	Well-balanced computations of weak local residuals for the shallow water equations. ANZIAM Journal, 0, 55, 128.	0.0	1
86	Numerical Entropy Production of Shallow Water Flows along Channels with Varying Width. , 0, , .		0