Yuko Munakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1529373/publications.pdf

Version: 2024-02-01

82 papers 5,949 citations

34 h-index 71 g-index

86 all docs 86 docs citations

86 times ranked 4414 citing authors

#	Article	IF	CITATIONS
1	The Pandemic as a Portal: Reimagining Psychological Science as Truly Open and Inclusive. Perspectives on Psychological Science, 2022, 17, 937-959.	5.2	26
2	Cultures Crossing: The Power of Habit in Delaying Gratification. Psychological Science, 2022, 33, 1172-1181.	1.8	20
3	Why Does Cognitive Training Yield Inconsistent Benefits? A Meta-Analysis of Individual Differences in Baseline Cognitive Abilities and Training Outcomes. Frontiers in Psychology, 2021, 12, 662139.	1.1	33
4	Understanding and Supporting Inhibitory Control: Unique Contributions From Proactive Monitoring and Motoric Stopping to Children's Improvements With Practice. Child Development, 2021, 92, e1290-e1307.	1.7	2
5	Executive Functions in Social Context: Implications for Conceptualizing, Measuring, and Supporting Developmental Trajectories. Annual Review of Developmental Psychology, 2021, 3, 139-163.	1.4	19
6	Active learning: "Hands-on―meets "minds-on― Science, 2021, 374, 26-30.	6.0	32
7	Good Things Come to Those Who Wait: Delaying Gratification Likely Does Matter for Later Achievement (A Commentary on Watts, Duncan, & Quan, 2018). Psychological Science, 2020, 31, 97-99.	1.8	12
8	Adaptiveness in proactive control engagement in children and adults. Developmental Cognitive Neuroscience, 2020, 46, 100870.	1.9	14
9	Deciding What to Do: Developments in Children's Spontaneous Monitoring of Cognitive Demands. Child Development Perspectives, 2020, 14, 202-207.	2.1	13
10	Same Data Set, Different Conclusions: Preschool Delay of Gratification Predicts Later Behavioral Outcomes in a Preregistered Study. Psychological Science, 2020, 31, 193-201.	1.8	34
11	Group Influences on Children's Delay of Gratification: Testing the Roles of Culture and Personal Connections. Collabra: Psychology, 2020, 6, .	0.9	17
12	Adaptive control and the avoidance of cognitive control demands across development. Neuropsychologia, 2019, 123, 152-158.	0.7	23
13	Group Influences on Engaging Self-Control: Children Delay Gratification and Value It More When Their In-Group Delays and Their Out-Group Doesn't. Psychological Science, 2018, 29, 738-748.	1.8	44
14	Using language to get ready: Familiar labels help children engage proactive control. Journal of Experimental Child Psychology, 2018, 166, 147-159.	0.7	13
15	Beyond personal control: The role of developing self-control abilities in the behavioral constellation of deprivation. Behavioral and Brain Sciences, 2017, 40, e324.	0.4	5
16	Getting ready to use control: Advances in the measurement of young children's use of proactive control. PLoS ONE, 2017, 12, e0175072.	1.1	15
17	Trust matters: Seeing how an adult treats another person influences preschoolers' willingness to delay gratification. Developmental Science, 2016, 19, 1011-1019.	1.3	71
18	Developing Selfâ€Directed Executive Functioning: Recent Findings and Future Directions. Mind, Brain, and Education, 2015, 9, 92-99.	0.9	22

#	Article	lF	Citations
19	Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children. Brain Sciences, 2015, 5, 494-508.	1.1	31
20	Myelination Is Associated with Processing Speed in Early Childhood: Preliminary Insights. PLoS ONE, 2015, 10, e0139897.	1.1	63
21	Time Isn't of the Essence. Psychological Science, 2015, 26, 1898-1908.	1.8	17
22	Metacognitive Processes in Executive Control Development: The Case of Reactive and Proactive Control. Journal of Cognitive Neuroscience, 2015, 27, 1125-1136.	1.1	136
23	Transitions in Executive Function: Insights From Developmental Parallels Between Prospective Memory and Cognitive Flexibility. Child Development Perspectives, 2015, 9, 128-132.	2.1	14
24	The practice of going helps children to stop: The importance of context monitoring in inhibitory control Journal of Experimental Psychology: General, 2014, 143, 959-965.	1.5	48
25	Less-structured time in children's daily lives predicts self-directed executive functioning. Frontiers in Psychology, 2014, 5, 593.	1.1	113
26	Individual Differences in the Balance of GABA to Glutamate in pFC Predict the Ability to Select among Competing Options. Journal of Cognitive Neuroscience, 2014, 26, 2490-2502.	1.1	32
27	Costs and benefits linked to developments in cognitive control. Developmental Science, 2014, 17, 203-211.	1.3	50
28	A developmental window into trade-offs in executive function: The case of task switching versus response inhibition in 6-year-olds. Neuropsychologia, 2014, 62, 356-364.	0.7	33
29	Modes of executive function and their coordination: Introduction to the special section. Neuropsychologia, 2014, 62, 319-320.	0.7	1
30	Opposite effects of anxiety and depressive symptoms on executive function: The case of selecting among competing options. Cognition and Emotion, 2014, 28, 893-902.	1.2	31
31	All Competition Is Not Alike: Neural Mechanisms for Resolving Underdetermined and Prepotent Competition. Journal of Cognitive Neuroscience, 2014, 26, 2608-2623.	1.1	20
32	Speed isn't everything: complex processing speed measures mask individual differences and developmental changes in executive control. Developmental Science, 2013, 16, 269-286.	1.3	109
33	So many options, so little control: Abstract representations can reduce selection demands to increase children's self-directed flexibility. Journal of Experimental Child Psychology, 2013, 116, 659-673.	0.7	18
34	The Nature and Nurture of High IQ. Psychological Science, 2013, 24, 1487-1495.	1.8	28
35	Delaying gratification depends on social trust. Frontiers in Psychology, 2013, 4, 355.	1.1	62
36	Individual differences in emotion-cognition interactions: emotional valence interacts with serotonin transporter genotype to influence brain systems involved in emotional reactivity and cognitive control. Frontiers in Human Neuroscience, 2013, 7, 327.	1.0	22

#	Article	IF	Citations
37	Why won't you do what I want? The informative failures of children and models. Cognitive Development, 2012, 27, 349-366.	0.7	19
38	Flexible rule use: Common neural substrates in children and adults. Developmental Cognitive Neuroscience, 2012, 2, 329-339.	1.9	59
39	Developing Cognitive Control. Current Directions in Psychological Science, 2012, 21, 71-77.	2.8	264
40	Cognitive Control Reflects Context Monitoring, Not Motoric Stopping, in Response Inhibition. PLoS ONE, 2012, 7, e31546.	1.1	134
41	A unified framework for inhibitory control. Trends in Cognitive Sciences, 2011, 15, 453-459.	4.0	489
42	The Role of Representations in Executive Function: Investigating a Developmental Link between Flexibility and Abstraction. Frontiers in Psychology, 2011, 2, 347.	1.1	30
43	Choosing Our Words: Retrieval and Selection Processes Recruit Shared Neural Substrates in Left Ventrolateral Prefrontal Cortex. Journal of Cognitive Neuroscience, 2011, 23, 3470-3482.	1.1	76
44	Becoming self-directed: Abstract representations support endogenous flexibility in children. Cognition, 2010, 116, 155-167.	1.1	65
45	Something old, something new: a developmental transition from familiarity to novelty preferences with hidden objects. Developmental Science, 2010, 13, 378-384.	1.3	15
46	Neural inhibition enables selection during language processing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16483-16488.	3.3	78
47	Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5529-5533.	3.3	236
48	More than a matter of getting â€~unstuck': flexible thinkers use more abstract representations than perseverators. Developmental Science, 2009, 12, 662-669.	1.3	41
49	When simple things are meaningful: Working memory strength predicts children's cognitive flexibility. Journal of Experimental Child Psychology, 2009, 103, 241-249.	0.7	58
50	Connectionist Approaches to Perseveration: Understanding Universal and Task-Specific Aspects of Children's Behavior., 2009,, 141-164.		3
51	So many options, so little time: The roles of association and competition in underdetermined responding. Psychonomic Bulletin and Review, 2008, 15, 1083-1088.	1.4	38
52	Developmental and Computational Approaches to Variation in Working Memory., 2008,, 162-193.		3
53	Why do children perseverate when they seem to know better: Graded working memory, or directed inhibition?. Psychonomic Bulletin and Review, 2007, 14, 1058-1065.	1.4	48
54	When Labels Hurt but Novelty Helps: Children's Perseveration and Flexibility in a Card-Sorting Task. Child Development, 2006, 77, 1589-1607.	1.7	64

#	Article	IF	Citations
55	When Actions Speak Louder Than Words. Psychological Science, 2006, 17, 665-669.	1.8	52
56	What's the Difference? Contrasting Modular and Neural Network Approaches to Understanding Developmental Variability. Journal of Developmental and Behavioral Pediatrics, 2005, 26, 128-139.	0.6	15
57	Familiarity Breeds Searching: Infants Reverse Their Novelty Preferences When Reaching for Hidden Objects. Psychological Science, 2005, 16, 596-600.	1.8	40
58	Processes of change in brain and cognitive development. Trends in Cognitive Sciences, 2005, 9, 152-158.	4.0	225
59	Cognitive development: at the crossroads?. Trends in Cognitive Sciences, 2005, 9, 91-91.	4.0	9
60	Common Mechanisms for Working Memory and Attention: The Case of Perseveration with Visible Solutions. Journal of Cognitive Neuroscience, 2005, 17, 623-631.	1.1	64
61	Hebbian learning and development. Developmental Science, 2004, 7, 141-148.	1.3	111
62	Computational cognitive neuroscience of early memory development. Developmental Review, 2004, 24, 133-153.	2.6	22
63	Developmental cognitive neuroscience: progress and potential. Trends in Cognitive Sciences, 2004, 8, 122-128.	4.0	95
64	Reasoning about a hidden object after a delay: Evidence for robust representations in 5-month-old infants. Cognition, 2003, 88, B23-B32.	1.1	26
65	Are infants in the dark about hidden objects?. Developmental Science, 2003, 6, 273-282.	1.3	37
66	Connectionist models of development. Developmental Science, 2003, 6, 413-429.	1.3	182
67	Children's perseveration: attentional inertia and alternative accounts. Developmental Science, 2003, 6, 471-473.	1.3	16
68	The best is yet to come: The promise of models of developmental disorders. Behavioral and Brain Sciences, 2002, 25, 765-766.	0.4	0
69	Rich interpretation vs. deflationary accounts in cognitive development: the case of means-end skills in 7-month-old infants. Cognition, 2002, 83, B43-B53.	1.1	9
70	Converging methods in developmental science: An introduction. Developmental Psychobiology, 2002, 40, 197-199.	0.9	7
71	Active versus latent representations: A neural network model of perseveration, dissociation, and decalage. Developmental Psychobiology, 2002, 40, 255-265.	0.9	224
72	Modeling infants' perception of object unity: what have we learned?. Developmental Science, 2002, 5, 176-178.	1.3	3

#	Article	IF	CITATION
73	Are you listening? Exploring a developmental knowledge-action dissociation in a speech interpretation task. Developmental Science, 2002, 5, 435-440.	1.3	36
74	Graded representations in behavioral dissociations. Trends in Cognitive Sciences, 2001, 5, 309-315.	4.0	257
75	Detecting Transparent Barriers: Clear Evidence Against the Means-End Deficit Account of Search Failures. Infancy, 2001, 2, 395-404.	0.9	25
76	Visual Representation in the Wild: How Rhesus Monkeys Parse Objects. Journal of Cognitive Neuroscience, 2001, 13, 44-58.	1.1	55
77	All Together Now: When Dissociations Between Knowledge and Action Disappear. Psychological Science, 2001, 12, 335-337.	1.8	120
78	Challenges to the Violation-of-Expectation Paradigm: Throwing the Conceptual Baby Out With the Perceptual Processing Bathwater?. Infancy, 2000, 1, 471-477.	0.9	34
79	Infant perseveration and implications for object permanence theories: A PDP model of the A B task. Developmental Science, 1998, 1, 161-184.	1.3	217
80	Infant perseveration: Rethinking data, theory, and the role of modelling. Developmental Science, 1998, 1, 205-211.	1.3	12
81	Rethinking infant knowledge: Toward an adaptive process account of successes and failures in object permanence tasks Psychological Review, 1997, 104, 686-713.	2.7	570
82	Perseverative reaching in infancy: The roles of hidden toys and motor history in the AB task., 1997, 20, 405-416.		85