Tania K Morimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/152924/publications.pdf Version: 2024-02-01

TANIA K MORIMOTO

#	Article	IF	CITATIONS
1	A Generalized Framework for Concentric Tube Robot Design Using Gradient-Based Optimization. IEEE Transactions on Robotics, 2022, 38, 3774-3791.	10.3	8
2	Design and Evaluation of a Miniaturized Force Sensor Based on Wave Backscattering. IEEE Robotics and Automation Letters, 2022, 7, 7550-7557.	5.1	1
3	Learning Non-Parametric Models in Real Time via Online Generalized Product of Experts. IEEE Robotics and Automation Letters, 2022, 7, 9326-9333.	5.1	0
4	Towards a Wireless Force Sensor Based on Wave Backscattering for Medical Applications. IEEE Sensors Journal, 2021, 21, 8903-8915.	4.7	8
5	VINE Catheter for Endovascular Surgery. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 384-391.	3.2	14
6	Design and Control of a Hand-Held Concentric Tube Robot for Minimally Invasive Surgery. IEEE Transactions on Robotics, 2021, 37, 1022-1038.	10.3	25
7	Teaching With Hapkit: Enabling Online Haptics Courses With Hands-On Laboratories. IEEE Robotics and Automation Magazine, 2021, 28, 79-91.	2.0	3
8	Closed-Loop Position Control for Growing Robots Via Online Jacobian Corrections. IEEE Robotics and Automation Letters, 2021, 6, 6820-6827.	5.1	10
9	Evolution and Analysis of Hapkit: An Open-Source Haptic Device for Educational Applications. IEEE Transactions on Haptics, 2020, 13, 354-367.	2.7	10
10	Permanent Magnet-Based Localization for Growing Robots in Medical Applications. IEEE Robotics and Automation Letters, 2020, 5, 2666-2673.	5.1	25
11	Development of a Low-Cost System for Laparoscopic Skills Training. Journal of Medical Robotics Research, 2019, 04, 1942002.	1.2	0
12	A Soft, Steerable Continuum Robot That Grows via Tip Extension. Soft Robotics, 2019, 6, 95-108.	8.0	130
13	Toward the Design of Personalized Continuum Surgical Robots. Annals of Biomedical Engineering, 2018, 46, 1522-1533.	2.5	23
14	Design of a Compact Actuation and Control System for Flexible Medical Robots. IEEE Robotics and Automation Letters, 2017, 2, 1579-1585.	5.1	29
15	Design of patient-specific concentric tube robots using path planning from 3-D ultrasound. , 2017, 2017, 165-168.		14
16	Series pneumatic artificial muscles (sPAMs) and application to a soft continuum robot. , 2017, 2017, 5503-5510.		111
17	3-D printed haptic devices for educational applications. , 2016, , .		38
18	Design of 3-D Printed Concentric Tube Robots. IEEE Transactions on Robotics, 2016, 32, 1419-1430.	10.3	47

#	Article	IF	CITATIONS
19	Surgeon design interface for patient-specific concentric tube robots. , 2016, 2016, 41-48.		11
20	Independent optical excitation of distinct neural populations. Nature Methods, 2014, 11, 338-346.	19.0	1,879
21	Robot Guided Sheaths (RoCS) for Percutaneous Access to the Pediatric Kidney: Patient-Specific Design and Preliminary Results. , 2013, , .		4
22	Assess Experiential Learning Outcomes. , 0, , .		1