Joachim MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1528135/publications.pdf Version: 2024-02-01

ΙΟΛΟΗΙΜ ΜΑΊ/ΙΙΕΡ

#	Article	IF	CITATIONS
1	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
2	Treatment of echinococcosis: albendazole and mebendazole – what else?. Parasite, 2014, 21, 70.	2.0	113
3	Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. Journal of Antimicrobial Chemotherapy, 2007, 60, 280-287.	3.0	83
4	A Novel Giardia lamblia Nitroreductase, GlNR1, Interacts with Nitazoxanide and Other Thiazolides. Antimicrobial Agents and Chemotherapy, 2007, 51, 1979-1986.	3.2	80
5	Thiazolides inhibit growth and induce glutathioneâ€ <i>S</i> â€transferase Pi (GSTP1)â€dependent cell death in human colon cancer cells. International Journal of Cancer, 2008, 123, 1797-1806.	5.1	77
6	<i>In Vitro</i> and <i>In Vivo</i> Effects of the Bumped Kinase Inhibitor 1294 in the Related Cyst-Forming Apicomplexans Toxoplasma gondii and Neospora caninum. Antimicrobial Agents and Chemotherapy, 2015, 59, 6361-6374.	3.2	72
7	Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: characterization of a novel nitroreductase (GINR2). Journal of Antimicrobial Chemotherapy, 2013, 68, 1781-1789.	3.0	71
8	In Vitro Effects of Thiazolides on Giardia lamblia WB Clone C6 Cultured Axenically and in Coculture with Caco2 Cells. Antimicrobial Agents and Chemotherapy, 2006, 50, 162-170.	3.2	70
9	Identification of differentially expressed genes in a Giardia lamblia WB C6 clone resistant to nitazoxanide and metronidazole. Journal of Antimicrobial Chemotherapy, 2008, 62, 72-82.	3.0	67
10	Neospora caninum Calcium-Dependent Protein Kinase 1 Is an Effective Drug Target for Neosporosis Therapy. PLoS ONE, 2014, 9, e92929.	2.5	63
11	Nitroreductase (GlNR1) increases susceptibility of Giardia lamblia and Escherichia coli to nitro drugs. Journal of Antimicrobial Chemotherapy, 2011, 66, 1029-1035.	3.0	59
12	In vitro and in vivo effects of 2-methoxyestradiol, either alone or combined with albendazole, against Echinococcus metacestodes. Experimental Parasitology, 2008, 119, 475-482.	1.2	56
13	In vitro culture systems for the study of apicomplexan parasites in farm animals. International Journal for Parasitology, 2013, 43, 115-124.	3.1	55
14	Neospora caninum: Functional inhibition of protein disulfide isomerase by the broad-spectrum anti-parasitic drug nitazoxanide and other thiazolides. Experimental Parasitology, 2008, 118, 80-88.	1.2	54
15	Development of a murine vertical transmission model for Toxoplasma gondii oocyst infection and studies on the efficacy of bumped kinase inhibitor (BKI)-1294 and the naphthoquinone buparvaquone against congenital toxoplasmosis. Journal of Antimicrobial Chemotherapy, 2017, 72, 2334-2341.	3.0	52
16	Comparative Pathobiology of the Intestinal Protozoan Parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Pathogens, 2019, 8, 116.	2.8	46
17	Comparative characterisation of two nitroreductases from Giardia lamblia as potential activators of nitro compounds. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 37-43.	3.4	43
18	Approaches for the vaccination and treatment of <i>Neospora caninum</i> infections in mice and ruminant models. Parasitology, 2016, 143, 245-259.	1.5	43

Joachim Müller

#	Article	IF	CITATIONS
19	New Approaches for the Identification of Drug Targets in Protozoan Parasites. International Review of Cell and Molecular Biology, 2013, 301, 359-401.	3.2	42
20	Evaluation of Giardia lamblia thioredoxin reductase as drug activating enzyme and as drug target. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 148-153.	3.4	42
21	Drug target identification in protozoan parasites. Expert Opinion on Drug Discovery, 2016, 11, 815-824.	5.0	40
22	Thioureides of 2-(phenoxymethyl)benzoic acid 4-R substituted: A novel class of anti-parasitic compounds. Parasitology International, 2009, 58, 128-135.	1.3	37
23	Profound Activity of the Anti-cancer Drug Bortezomib against Echinococcus multilocularis Metacestodes Identifies the Proteasome as a Novel Drug Target for Cestodes. PLoS Neglected Tropical Diseases, 2014, 8, e3352.	3.0	37
24	Dose-dependent effects of experimental infection with the virulent Neospora caninum Nc-Spain7 isolate in a pregnant mouse model. Veterinary Parasitology, 2015, 211, 133-140.	1.8	36
25	Buparvaquone is active against Neospora caninum in vitro and in experimentally infected mice. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 16-25.	3.4	36
26	Induction of tachyzoite egress from cells infected with the protozoan Neospora caninum by nitro- and bromo-thiazolides, a class of broad-spectrum anti-parasitic drugs. International Journal for Parasitology, 2007, 37, 1143-1152.	3.1	35
27	Characterization of the Activities of Dinuclear Thiolato-Bridged Arene Ruthenium Complexes against Toxoplasma gondii. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	35
28	Virulence in Mice of a Toxoplasma gondii Type II Isolate Does Not Correlate With the Outcome of Experimental Infection in Pregnant Sheep. Frontiers in Cellular and Infection Microbiology, 2018, 8, 436.	3.9	35
29	Activity of mefloquine and mefloquine derivatives against Echinococcus multilocularis. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 331-340.	3.4	33
30	Di-cationic arylimidamides act against Neospora caninum tachyzoites by interference in membrane structure and nucleolar integrity and are active against challenge infection in mice. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 109-120.	3.4	32
31	Advances in bumped kinase inhibitors for human and animal therapy for cryptosporidiosis. International Journal for Parasitology, 2017, 47, 753-763.	3.1	30
32	Accessible and distinct decoquinate derivatives active against Mycobacterium tuberculosis and apicomplexan parasites. Communications Chemistry, 2018, 1, .	4.5	30
33	In vitro screening of the open source Pathogen Box identifies novel compounds with profound activities against Neospora caninum. International Journal for Parasitology, 2017, 47, 801-809.	3.1	28
34	Physiological aspects of nitro drug resistance in Giardia lamblia. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 271-277.	3.4	28
35	The FAD-dependent glycerol-3-phosphate dehydrogenase of Ciardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX. Frontiers in Microbiology, 2015, 06, 544.	3.5	27
36	Repurposing of antiparasitic drugs: the hydroxy-naphthoquinone buparvaquone inhibits vertical transmission in the pregnant neosporosis mouse model. Veterinary Research, 2016, 47, 32.	3.0	27

Joachim Mù⁄4ller

#	Article	IF	CITATIONS
37	In vitro metabolomic footprint of the Echinococcus multilocularis metacestode. Scientific Reports, 2019, 9, 19438.	3.3	26
38	Oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine that potentially interacts with parasite ferritin and cystatin. International Journal of Antimicrobial Agents, 2015, 46, 546-551.	2.5	25
39	Targeting of the mitochondrion by dinuclear thiolato-bridged arene ruthenium complexes in cancer cells and in the apicomplexan parasite <i>Neospora caninum</i> . Metallomics, 2019, 11, 462-474.	2.4	25
40	Two Novel Calcium-Dependent Protein Kinase 1 Inhibitors Interfere with Vertical Transmission in Mice Infected with Neospora caninum Tachyzoites. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
41	Resistance formation to nitro drugs in Giardia lamblia: No common markers identified by comparative proteomics. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 112-119.	3.4	23
42	In vitro effects of new artemisinin derivatives in Neospora caninum-infected human fibroblasts. International Journal of Antimicrobial Agents, 2015, 46, 88-93.	2.5	22
43	Stable expression of Escherichia coli Â-glucuronidase A (GusA) in Giardia lamblia: application to high-throughput drug susceptibility testing. Journal of Antimicrobial Chemotherapy, 2009, 64, 1187-1191.	3.0	21
44	Identification of a host cell target for the thiazolide class of broad-spectrum anti-parasitic drugs. Experimental Parasitology, 2011, 128, 145-150.	1.2	21
45	N-terminal fusion of a toll-like receptor 2-ligand to a <i>Neospora caninum</i> chimeric antigen efficiently modifies the properties of the specific immune response. Parasitology, 2016, 143, 606-616.	1.5	21
46	Drug Target Identification in Intracellular and Extracellular Protozoan Parasites. Current Topics in Medicinal Chemistry, 2011, 11, 2029-2038.	2.1	19
47	Endochin-Like Quinolones Exhibit Promising Efficacy Against Neospora Caninum in vitro and in Experimentally Infected Pregnant Mice. Frontiers in Veterinary Science, 2018, 5, 285.	2.2	17
48	<i>In vitro</i> treatment of <i>Besnoitia besnoiti</i> with the naphto-quinone buparvaquone results in marked inhibition of tachyzoite proliferation, mitochondrial alterations and rapid adaptation of tachyzoites to increased drug concentrations. Parasitology, 2019, 146, 112-120.	1.5	17
49	Neospora caninum: Structure and Fate of Multinucleated Complexes Induced by the Bumped Kinase Inhibitor BKI-1294. Pathogens, 2020, 9, 382.	2.8	17
50	Characterization of a Giardia lamblia WB C6 clone resistant to the isoflavone formononetin. Microbiology (United Kingdom), 2007, 153, 4150-4158.	1.8	16
51	One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Veterinary Parasitology, 2021, 289, 109336.	1.8	16
52	Neospora caninum: Differential Proteome of Multinucleated Complexes Induced by the Bumped Kinase Inhibitor BKI-1294. Microorganisms, 2020, 8, 801.	3.6	15
53	A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 201-209.	3.4	14
54	Activities of 11â€Azaartemisinin and <i>N</i> â€Sulfonyl Derivatives against <i>Neospora caninum</i> and Comparative Cytotoxicities. ChemMedChem, 2017, 12, 2094-2098.	3.2	14

Joachim Mù⁄4ller

#	Article	IF	CITATIONS
55	1H HR-MAS NMR spectroscopy to study the metabolome of the protozoan parasite Giardia lamblia. Talanta, 2018, 188, 429-441.	5.5	14
56	<i>In Vitro</i> Screening of the Open-Source Medicines for Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against Theileria annulata Schizonts. Antimicrobial Agents and Chemotherapy, 2016, 60, 3301-3308.	3.2	13
57	Comparative proteomics of three <i>Giardia lamblia</i> strains: investigation of antigenic variation in the post-genomic era. Parasitology, 2020, 147, 1008-1018.	1.5	13
58	Cellular and Molecular Targets of Nucleotide-Tagged Trithiolato-Bridged Arene Ruthenium Complexes in the Protozoan Parasites Toxoplasma gondii and Trypanosoma brucei. International Journal of Molecular Sciences, 2021, 22, 10787.	4.1	13
59	Comparative assessment of the effects of bumped kinase inhibitors on early zebrafish embryo development and pregnancy in mice. International Journal of Antimicrobial Agents, 2020, 56, 106099.	2.5	12
60	Activities of Endochin-Like Quinolones Against in vitro Cultured Besnoitia besnoiti Tachyzoites. Frontiers in Veterinary Science, 2020, 7, 96.	2.2	12
61	Modulation of cis- and trans- Golgi and the Rab9A-GTPase during infection by Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum. Experimental Parasitology, 2018, 187, 75-85.	1.2	11
62	Synthesis, characterization and antiparasitic activity of organometallic derivatives of the anthelmintic drug albendazole. Dalton Transactions, 2020, 49, 6616-6626.	3.3	11
63	Nitroreductases of bacterial origin in Giardia lamblia : Potential role in detoxification of xenobiotics. MicrobiologyOpen, 2019, 8, e904.	3.0	8
64	The Impact of BKI-1294 Therapy in Mice Infected With the Apicomplexan Parasite Neospora caninum and Re-infected During Pregnancy. Frontiers in Veterinary Science, 2020, 7, 587570.	2.2	7
65	Metabolomic Profiling of Wildtype and Transgenic Giardia lamblia Strains by 1H HR-MAS NMR Spectroscopy. Metabolites, 2020, 10, 53.	2.9	7
66	Nitroreductase Activites in Giardia lamblia: ORF 17150 Encodes a Quinone Reductase with Nitroreductase Activity. Pathogens, 2021, 10, 129.	2.8	5
67	Common Molecular Targets of a Quinolone Based Bumped Kinase Inhibitor in Neospora caninum and Danio rerio. International Journal of Molecular Sciences, 2022, 23, 2381.	4.1	5
68	3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 47-55.	3.4	5
69	In Vitro Activities of MMV Malaria Box Compounds against the Apicomplexan Parasite Neospora caninum, the Causative Agent of Neosporosis in Animals. Molecules, 2020, 25, 1460.	3.8	4
70	PrP-C1 fragment in cattle brains reveals features of the transmissible spongiform encephalopathy associated PrPsc. Brain Research, 2017, 1659, 19-28.	2.2	3
71	Transfection With Plasmid Causing Stable Expression of a Foreign Gene Affects General Proteome Pattern in Giardia lamblia Trophozoites. Frontiers in Cellular and Infection Microbiology, 2020, 10, 602756.	3.9	3
72	Characterization of a MOB1 Homolog in the Apicomplexan Parasite Toxoplasma gondii. Biology, 2021, 10, 1233.	2.8	2

#	ARTICLE	IF	CITATIONS
73	Production of Valeriana officinalis roots in different soil structure in East Albania. , 2017, , .		0
74	Organometallic Derivatives of Decoquinate Targeted toward <i>Toxoplasma gondii</i> . Organometallics, 0, , .	2.3	0