Peter H Santschi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1527600/peter-h-santschi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

12,680 63 105 201 h-index g-index citations papers 6.16 13,839 5.6 207 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
201	Large seasonal fluctuations of groundwater radioiodine speciation and concentrations in a riparian wetland in South Carolina. <i>Science of the Total Environment</i> , 2021 , 151548	10.2	O
200	Molecular Level Characterization of Diatom and Coccolithophore-Associated Biopolymers That Are Binding 210Pb and 210Po in Seawater. <i>Frontiers in Marine Science</i> , 2021 , 8,	4.5	2
199	Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. <i>Gels</i> , 2021 , 7,	4.2	3
198	Stickiness of extracellular polymeric substances on different surfaces via magnetic tweezers. <i>Science of the Total Environment</i> , 2021 , 757, 143766	10.2	4
197	Photo-oxidation of proteins facilitates the preservation of high molecular weight dissolved organic nitrogen in the ocean. <i>Marine Chemistry</i> , 2021 , 229, 103907	3.7	3
196	From Nano-Gels to Marine Snow: A Synthesis of Gel Formation Processes and Modeling Efforts Involved with Particle Flux in the Ocean. <i>Gels</i> , 2021 , 7,	4.2	3
195	The Interplay of Phototrophic and Heterotrophic Microbes Under Oil Exposure: A Microcosm Study. <i>Frontiers in Microbiology</i> , 2021 , 12, 675328	5.7	1
194	Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study. <i>Journal of Marine Science and Engineering</i> , 2020 , 8, 781	2.4	4
193	Exoenzymes as a Signature of Microbial Response to Marine Environmental Conditions. <i>MSystems</i> , 2020 , 5,	7.6	6
192	Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. <i>Marine Chemistry</i> , 2020 , 223, 103789	3.7	12
191	Polycyclic aromatic hydrocarbons (PAHs) and putative PAH-degrading bacteria in Galveston Bay, TX (USA), following Hurricane Harvey (2017). <i>Environmental Science and Pollution Research</i> , 2020 , 27, 3498	7-3 1 499	9 ¹⁴
190	Diatom aggregation when exposed to crude oil and chemical dispersant: Potential impacts of ocean acidification. <i>PLoS ONE</i> , 2020 , 15, e0235473	3.7	5
189	Polycyclic aromatic hydrocarbons (PAHs) cycling and fates in Galveston Bay, Texas, USA. <i>PLoS ONE</i> , 2020 , 15, e0243734	3.7	3
188	Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their Btickiness and aggregation propensity?. <i>Marine Chemistry</i> , 2020 , 218, 103734	3.7	24
187	Nano-plastics induce aquatic particulate organic matter (microgels) formation. <i>Science of the Total Environment</i> , 2020 , 706, 135681	10.2	27
186	Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. <i>Science of the Total Environment</i> , 2020 , 748, 141469	10.2	21
185	Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy. <i>Environmental Science & Environmental Science & Envi</i>	10.3	5

(2018-2019)

184	Comparison of microgels, extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP) determined in seawater with and without oil. <i>Marine Chemistry</i> , 2019 , 215, 103667	3.7	15
183	Nagasaki sediments reveal that long-term fate of plutonium is controlled by select organic matter moieties. <i>Science of the Total Environment</i> , 2019 , 678, 409-418	10.2	4
182	Iodine speciation in a silver-amended cementitious system. <i>Environment International</i> , 2019 , 126, 576-5	81 2.9	9
181	Rapid Degradation of Oil in Mesocosm Simulations of Marine Oil Snow Events. <i>Environmental Science & Environmental Science & E</i>	10.3	13
180	Iodine speciation in cementitious environments. <i>Applied Geochemistry</i> , 2019 , 103, 15-22	3.5	9
179	The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms. <i>Science of the Total Environment</i> , 2019 , 693, 133626	10.2	11
178	Incorporation of oil into diatom aggregates. Marine Ecology - Progress Series, 2019, 612, 65-86	2.6	27
177	Colloids and Nanoparticles in Aquatic Systems 2019 , 1-13		
176	Impact of exposure of crude oil and dispersant (Corexit) on aggregation of extracellular polymeric substances. <i>Science of the Total Environment</i> , 2019 , 657, 1535-1542	10.2	15
175	Sunlight induced aggregation of dissolved organic matter: Role of proteins in linking organic carbon and nitrogen cycling in seawater. <i>Science of the Total Environment</i> , 2019 , 654, 872-877	10.2	14
174	Response of natural phytoplankton communities exposed to crude oil and chemical dispersants during a mesocosm experiment. <i>Aquatic Toxicology</i> , 2019 , 206, 43-53	5.1	22
173	Centennial record of anthropogenic impacts in Galveston Bay: Evidence from trace metals (Hg, Pb, Ni, Zn) and lignin oxidation products. <i>Environmental Pollution</i> , 2018 , 237, 887-899	9.3	16
172	Mercury inputs and redistribution in the Penobscot River and estuary, Maine. <i>Science of the Total Environment</i> , 2018 , 622-623, 172-183	10.2	13
171	Sediment accumulation and mixing in the Penobscot River and estuary, Maine. <i>Science of the Total Environment</i> , 2018 , 635, 228-239	10.2	1
170	Limited mobility of dioxins near San Jacinto super fund site (waste pit) in the Houston Ship Channel, Texas due to strong sediment sorption. <i>Environmental Pollution</i> , 2018 , 238, 988-998	9.3	11
169	Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform Infrared spectroscopy. <i>Marine Pollution Bulletin</i> , 2018 , 130, 170-178	6.7	6
168	Radionuclide uptake by colloidal and particulate humic acids obtained from 14 soils collected worldwide. <i>Scientific Reports</i> , 2018 , 8, 4795	4.9	7
167	Biogenic Manganese Oxides Facilitate Iodide Oxidation at pH 區. <i>Geomicrobiology Journal</i> , 2018 , 35, 167-173	2.5	6

166	Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit. <i>Frontiers in Microbiology</i> , 2018 , 9, 689	5.7	44
165	Extracellular Enzyme Activity Profile in a Chemically Enhanced Water Accommodated Fraction of Surrogate Oil: Toward Understanding Microbial Activities After the Deepwater Horizon Oil Spill. <i>Frontiers in Microbiology</i> , 2018 , 9, 798	5.7	23
164	Identifying oil/marine snow associations in mesocosm simulations of the Deepwater Horizon oil spill event using solid-state C NMR spectroscopy. <i>Marine Pollution Bulletin</i> , 2018 , 126, 159-165	6.7	23
163	Marine colloids, agents of the self-cleansing capacity of aquatic systems: Historical perspective and new discoveries. <i>Marine Chemistry</i> , 2018 , 207, 124-135	3.7	33
162	Protein: Polysaccharide ratio in exopolymeric substances controlling the surface tension of seawater in the presence or absence of surrogate Macondo oil with and without Corexit. <i>Marine Chemistry</i> , 2018 , 206, 84-92	3.7	25
161	The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. <i>Marine Chemistry</i> , 2018 , 206, 52-61	3.7	20
160	Decreased sedimentation efficiency of petro- and non-petro-carbon caused by a dispersant for Macondo surrogate oil in a mesocosm simulating a coastal microbial community. <i>Marine Chemistry</i> , 2018 , 206, 34-43	3.7	18
159	The effects of sunlight on the composition of exopolymeric substances and subsequent aggregate formation during oil spills. <i>Marine Chemistry</i> , 2018 , 203, 49-54	3.7	19
158	Sorption of selected radionuclides on different MnO2 phases. <i>Environmental Chemistry</i> , 2017 , 14, 207	3.2	4
157	Light-induced aggregation of microbial exopolymeric substances. <i>Chemosphere</i> , 2017 , 181, 675-681	8.4	28
156	Estimates of recovery of the Penobscot River and estuarine system from mercury contamination in the 1960's. <i>Science of the Total Environment</i> , 2017 , 596-597, 351-359	10.2	17
155	Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium. <i>Journal of Environmental Radioactivity</i> , 2017 , 171, 226-233	2.4	17
154	Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. <i>Advances in Applied Microbiology</i> , 2017 , 101, 83-136	4.9	22
153	Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton. <i>Nanoscale Research Letters</i> , 2017 , 12, 620	5	24
152	Plutonium Partitioning Behavior to Humic Acids from Widely Varying Soils Is Related to Carboxyl-Containing Organic Compounds. <i>Environmental Science & Die Campounds</i> , 2017, 51, 11742-11	7 5 9.3	9
151	Response of photosynthesis and the antioxidant defense system of two microalgal species (Alexandrium minutum and Dunaliella salina) to the toxicity of BDE-47. <i>Marine Pollution Bulletin</i> , 2017 , 124, 459-469	6.7	30
150	Iodine and plutonium association with natural organic matter: A review of recent advances. <i>Applied Geochemistry</i> , 2017 , 85, 121-127	3.5	26
149	Importance of coccolithophore-associated organic biopolymers for fractionating particle-reactive radionuclides (234Th, 233Pa, 210Pb, 210Po, and 7Be) in the ocean. <i>Journal of Geophysical Research G: Biogeosciences</i> 2017 , 122, 2033-2045	3.7	3

(2014-2016)

148	The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. <i>Limnology and Oceanography Letters</i> , 2016 , 1, 3-26	7.9	71
147	Role of natural organic matter on iodine and (239)(,240)Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan. <i>Journal of Environmental Radioactivity</i> , 2016 , 153, 156-166	2.4	34
146	Widespread Distribution of Dehalococcoides mccartyi in the Houston Ship Channel and Galveston Bay, Texas, Sediments and the Potential for Reductive Dechlorination of PCDD/F in an Estuarine Environment. <i>Marine Biotechnology</i> , 2016 , 18, 630-644	3.4	16
145	Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil. <i>Environmental Science & Environmental Sc</i>	10.3	28
144	Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater. <i>Earth and Planetary Science Letters</i> , 2015 , 423, 193-201	5.3	28
143	Binding of Th, Pa, Pb, Po and Be radionuclides to marine colloidal macromolecular organic matter. <i>Marine Chemistry</i> , 2015 , 173, 320-329	3.7	32
142	Methods for analyzing the concentration and speciation of major and trace elements in marine particles. <i>Progress in Oceanography</i> , 2015 , 133, 32-42	3.8	31
141	Evidence for Hydroxamate Siderophores and Other N-Containing Organic Compounds Controlling (239,240)Pu Immobilization and Remobilization in a Wetland Sediment. <i>Environmental Science & Environmental Science</i>	10.3	27
140	Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. <i>Journal of Environmental Radioactivity</i> , 2015 , 139, 43-55	2.4	36
139	Molecular level characterization of diatom-associated biopolymers that bind 234Th, 233Pa, 210Pb, and 7Be in seawater: A case study with Phaeodactylum tricornutum. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 1858-1869	3.7	8
138	Speciation of iodine isotopes inside and outside of a contaminant plume at the Savannah River Site. <i>Science of the Total Environment</i> , 2014 , 497-498, 671-678	10.2	11
137	Plutonium immobilization and remobilization by soil mineral and organic matter in the far-field of the Savannah River Site, U.S. <i>Environmental Science & Environmental Scienc</i>	10.3	27
136	Temporal variation of iodine concentration and speciation (127I and 129I) in wetland groundwater from the Savannah River Site, USA. <i>Environmental Science & Environmental Sci</i>	10.3	14
135	Increased zooplankton PAH concentrations across hydrographic fronts in the East China Sea. <i>Marine Pollution Bulletin</i> , 2014 , 83, 248-57	6.7	11
134	Radioiodine concentrated in a wetland. <i>Journal of Environmental Radioactivity</i> , 2014 , 131, 57-61	2.4	24
133	Important role of biomolecules from diatoms in the scavenging of particle-reactive radionuclides of thorium, protactinium, lead, polonium, and beryllium in the ocean: A case study with Phaeodactylum tricornutum. <i>Limnology and Oceanography</i> , 2014 , 59, 1256-1266	4.8	23
132	Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 2693-9	4.8	29
131	Geochemical controls of iodine uptake and transport in Savannah River Site subsurface sediments. <i>Applied Geochemistry</i> , 2014 , 45, 105-113	3.5	21

130	Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic Matter. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 686-702	8.3	124
129	Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. <i>Marine Chemistry</i> , 2013 , 157, 131-143	3.7	34
128	Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 107, 47-64	5.5	40
127	Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. <i>Aquatic Toxicology</i> , 2013 , 126, 214-23	5.1	58
126	Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry. <i>Science of the Total Environment</i> , 2013 , 449, 244-52	10.2	50
125	Relationships Between Geochemical Parameters (pH, DOC, SPM, EDTA Concentrations) and Trace Metal (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) Concentrations in River Waters of Texas (USA). <i>Aquatic Geochemistry</i> , 2013 , 19, 173-193	1.7	15
124	Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	65
123	Response to comment on "Iodine-129 and iodine-127 speciation in groundwater at Hanford Site, U.S.: iodate incorporation into calcite". <i>Environmental Science & Environmental </i>	10.3	2
122	Bacterial production of organic acids enhances H2O2-dependent iodide oxidation. <i>Environmental Science & Environmental Science</i>	10.3	44
121	234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 91, 60-74	5.5	31
120	Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 97, 166-182	5.5	49
119	Collection of lanthanides and actinides from natural waters with conventional and nanoporous sorbents. <i>Environmental Science & Environmental Environmenta</i>	10.3	77
118	Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances. <i>Environmental Science & Environmental Scien</i>	10.3	100
117	Is soil natural organic matter a sink or source for mobile radioiodine (129I) at the Savannah River Site?. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 5716-5735	5.5	63
116	Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton. <i>PLoS ONE</i> , 2011 , 6, e21865	3.7	62
115	Factors controlling mobility of 127I and 129I species in an acidic groundwater plume at the Savannah River Site. <i>Science of the Total Environment</i> , 2011 , 409, 3857-65	10.2	55
114	Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. <i>Marine Chemistry</i> , 2011 , 126, 27-36	3.7	71
113	Molecular weight and chemical reactivity of dissolved trace metals (Cd, Cu, Ni) in surface waters from the Mississippi River to Gulf of Mexico. <i>Estuarine, Coastal and Shelf Science</i> , 2011 , 92, 649-658	2.9	17

(2008-2011)

112	Sequestration and remobilization of radioiodine (129I) by soil organic matter and possible consequences of the remedial action at Savannah River Site. <i>Environmental Science & Enpy; Technology</i> , 2011 , 45, 9975-83	10.3	62
111	Evaluation of a radioiodine plume increasing in concentration at the Savannah River Site. <i>Environmental Science & Environmental Science & Environment</i>	10.3	50
110	Controls of 234Th removal from the oligotrophic ocean by polyuronic acids and modification by microbial activity. <i>Marine Chemistry</i> , 2011 , 123, 111-126	3.7	31
109	lodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129I-contaminated aquifer at the Savannah River site, South Carolina. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 2153-60	4.8	30
108	Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. <i>PLoS ONE</i> , 2010 , 5, e15196	3.7	143
107	Impacts of Dredging Activities on the Accumulation of Dioxins in Surface Sediments of the Houston Ship Channel, Texas. <i>Journal of Coastal Research</i> , 2010 , 264, 743-752	0.6	13
106	Polymer dynamics of DOC networks and gel formation in seawater. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 2010 , 57, 1486-1493	2.3	90
105	Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2814-22	3.8	190
104	Comparative evaluation of sediment trap and 234Th-derived POC fluxes from the upper oligotrophic waters of the Gulf of Mexico and the subtropical northwestern Pacific Ocean. <i>Marine Chemistry</i> , 2010 , 121, 132-144	3.7	40
103	Application of cross-flow ultrafiltration for isolating exopolymeric substances from a marine diatom (Amphora sp.). <i>Limnology and Oceanography: Methods</i> , 2009 , 7, 419-429	2.6	26
102	Spontaneous Assembly of Exopolymers from Phytoplankton. <i>Terrestrial, Atmospheric and Oceanic Sciences</i> , 2009 , 20, 741	1.8	34
101	Delivery of Trace Metals (Al, Fe, Mn, V, Co, Ni, Cu, Cd, Ag, Pb) from the Trinity River Watershed Towards the Ocean. <i>Estuaries and Coasts</i> , 2009 , 32, 158-172	2.8	15
100	Optimized isolation procedure for obtaining strongly actinide binding exopolymeric substances (EPS) from two bacteria (Sagittula stellata and Pseudomonas fluorescens Biovar II). <i>Bioresource Technology</i> , 2009 , 100, 6010-21	11	25
99	Organo-iodine formation in soils and aquifer sediments at ambient concentrations. <i>Environmental Science & Environmental Scien</i>	10.3	71
98	The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. <i>Environmental Pollution</i> , 2009 , 157, 3034-41	9.3	329
97	Scavenging and fractionation of thorium vs. protactinium in the ocean, as determined from particle water partitioning experiments with sediment trap material from the Gulf of Mexico and Sargasso Sea. Earth and Planetary Science Letters, 2009, 286, 131-138	5.3	34
96	Causes of Salt Marsh Erosion in Galveston Bay, Texas. <i>Journal of Coastal Research</i> , 2009 , 252, 265-272	0.6	45
95	The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast. <i>Estuarine, Coastal and Shelf Science</i> , 2008 , 76, 69-84	2.9	11

94	Comment on How accurate are 234Th measurements in seawater based on the MnO2-impregnated cartridge technique?Iby Pinghe Cai et al <i>Geochemistry, Geophysics, Geosystems</i> , 2008 , 9, n/a-n/a	3.6	5
93	Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. <i>Marine Chemistry</i> , 2008 , 112, 11-19	3.7	79
92	The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: Comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas). <i>Marine Chemistry</i> , 2008 , 112, 20-37	3.7	46
91	Colloidal cutin-like substances cross-linked to siderophore decomposition products mobilizing plutonium from contaminated soils. <i>Environmental Science & Environmental Scienc</i>	10.3	54
90	Pu(V) reduction and enhancement of particle-water partitioning by exopolymeric substances. <i>Radiochimica Acta</i> , 2008 , 96, 739-745	1.9	16
89	Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. <i>Ecotoxicology</i> , 2008 , 17, 372-86	2.9	1234
88	Chemical composition and 234Th (IV) binding of extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp <i>Marine Chemistry</i> , 2008 , 112, 81-92	3.7	47
87	Dioxin chronology and fluxes in sediments of the Houston Ship Channel, Texas: influences of non-steady-state sediment transport and total organic carbon. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 5291-8	10.3	35
86	ColloidTrace Element Interactions in Aquatic Systems 2007 , 95-157		13
85	Ultrafiltration and its Applications to Sampling and Characterisation of Aquatic Colloids 2007 , 159-221		37
84	Carbon isotopes and iodine concentrations in a Mississippi River delta core recording land use, sediment transport, and dam building in the river's drainage basin. <i>Marine Environmental Research</i> , 2007 , 63, 278-90	3.3	11
83	Protective Role of Alginic Acid Against Metal Uptake by American Oyster (Crassostrea virginica). <i>Environmental Chemistry</i> , 2006 , 3, 172	3.2	15
82	An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. <i>Marine Chemistry</i> , 2006 , 100, 213-233	3.7	209
81	Binding of thorium(IV) to carboxylate, phosphate and sulfate functional groups from marine exopolymeric substances (EPS). <i>Marine Chemistry</i> , 2006 , 100, 337-353	3.7	59
80	Thorium speciation in seawater. <i>Marine Chemistry</i> , 2006 , 100, 250-268	3.7	118
79	Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. <i>Marine Chemistry</i> , 2006 , 101, 104-129	3.7	61
78	A seasonal survey of carbohydrates and uronic acids in the Trinity River, Texas. <i>Organic Geochemistry</i> , 2005 , 36, 463-474	3.1	38
77	Near-conservative behavior of 129I in the orange county aquifer system, California. <i>Applied Geochemistry</i> , 2005 , 20, 1461-1472	3.5	17

(2002-2005)

76	The dissolved organic iodine species of the isotopic ratio of 129I/127I: A novel tool for tracing terrestrial organic carbon in the estuarine surface waters of Galveston Bay, Texas. <i>Limnology and Oceanography: Methods</i> , 2005 , 3, 326-337	2.6	41
75	Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. <i>Marine Chemistry</i> , 2005 , 96, 293-313	3.7	59
74	Isolation and characterization of extracellular polysaccharides produced by Pseudomonas fluorescens Biovar II. <i>Carbohydrate Polymers</i> , 2005 , 61, 141-147	10.3	56
73	129I/(127)I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine. <i>Science of the Total Environment</i> , 2004 , 321, 257-71	10.2	63
72	Biogeochemical behavior of organic carbon in the Trinity River downstream of a large reservoir lake in Texas, USA. <i>Science of the Total Environment</i> , 2004 , 329, 131-44	10.2	36
71	Sediment accumulation and radionuclide inventories (239,240Pu, 210Pb and 234Th) in the northern Gulf of Mexico, as influenced by organic matter and macrofaunal density. <i>Marine Chemistry</i> , 2004 , 91, 1-14	3.7	75
70	The oceanic gel phase: a bridge in the DOMPOM continuum. <i>Marine Chemistry</i> , 2004 , 92, 67-85	3.7	483
69	Characterization of organic-rich colloids from surface and ground waters at the actinide-contaminated Rocky Flats Environmental Technology Site (RFETS), Colorado, USA. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 244, 105-111	5.1	15
68	Upper ocean carbon flux determined by the 234Th approach and sediment traps using size-fractionated POC and 234Th data from the Gulf of Mexico. <i>Geochemical Journal</i> , 2004 , 38, 601-611	0.9	43
67	Distributions of carbohydrate species in the Gulf of Mexico. <i>Marine Chemistry</i> , 2003 , 81, 119-135	3.7	95
66	Production and flux of carbohydrate species in the Gulf of Mexico. <i>Global Biogeochemical Cycles</i> , 2003 , 17, n/a-n/a	5.9	30
65	Control of acid polysaccharide production and 234Th and POC export fluxes by marine organisms. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	76
64	Nitrogen and carbon isotopic composition of high-molecular-weight dissolved organic matter in marine environments. <i>Marine Ecology - Progress Series</i> , 2003 , 252, 51-60	2.6	28
63	Silver concentrations in Colorado, USA, watersheds using improved methodology. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 2040-2051	3.8	48
62	Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston Bay waters. <i>Marine Chemistry</i> , 2002 , 78, 29-45	3.7	95
61	234Th scavenging and its relationship to acid polysaccharide abundance in the Gulf of Mexico. <i>Marine Chemistry</i> , 2002 , 78, 103-119	3.7	96
60	Importance of acid polysaccharides for 234Th complexation to marine organic matter. <i>Limnology and Oceanography</i> , 2002 , 47, 367-377	4.8	143
59	Actinide Migration from Contaminated Soil to Surface Water at the Rocky Flats Environmental Technology Site. <i>Journal of Nuclear Science and Technology</i> , 2002 , 39, 485-488	1	4

58	Organic nature of colloidal actinides transported in surface water environments. <i>Environmental Science & Environmental Scienc</i>	10.3	94
57	Sources of iodine and iodine 129 in rivers. Water Resources Research, 2002, 38, 24-1-24-10	5.4	115
56	Sources of alluvium in a coastal plain stream based on radionuclide signatures from the 238U and 232Th decay series. <i>Water Resources Research</i> , 2002 , 38, 24-1-24-11	5.4	12
55	Accumulation rates and sources of sediments and organic carbon on the Palos Verdes shelf based on radioisotopic tracers (137Cs, 239,240Pu, 210Pb, 234Th, 238U and 14C). <i>Marine Chemistry</i> , 2001 , 73, 125-152	3.7	51
54	Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. <i>Marine Chemistry</i> , 2001 , 73, 305-318	3.7	101
53	Sorption irreversibility and coagulation behavior of 234Th with marine organic matter. <i>Marine Chemistry</i> , 2001 , 76, 27-45	3.7	63
52	Spectrophotometric determination of total uronic acids in seawater using cation-exchange separation and pre-concentration by lyophilization. <i>Analytica Chimica Acta</i> , 2001 , 427, 111-117	6.6	50
51	Composition and transport of settling particles in Lake Zurich: relative importance of vertical and lateral pathways. <i>Aquatic Sciences</i> , 2001 , 63, 123-149	2.5	10
50	Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. <i>Marine Chemistry</i> , 2001 , 73, 215	5-3 <i>3</i> ⁄1	78
	Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta,		
49	Galveston Bay and Tampa Bay sediment cores. <i>Marine Environmental Research</i> , 2001 , 52, 51-79	3.3	199
49		3.3	
	Galveston Bay and Tampa Bay sediment cores. <i>Marine Environmental Research</i> , 2001 , 52, 51-79 Effect of dissolved organic matter on the uptake of trace metals by American oysters.		
48	Galveston Bay and Tampa Bay sediment cores. <i>Marine Environmental Research</i> , 2001 , 52, 51-79 Effect of dissolved organic matter on the uptake of trace metals by American oysters. Environmental Science & Environmental &	10.3	71
48 47	Galveston Bay and Tampa Bay sediment cores. <i>Marine Environmental Research</i> , 2001 , 52, 51-79 Effect of dissolved organic matter on the uptake of trace metals by American oysters. <i>Environmental Science & Discourse amp; Technology</i> , 2001 , 35, 885-93 Organic complexation of copper in surface waters of Galveston Bay. <i>Limnology and Oceanography</i> , 2001 , 46, 321-330 Trace metal composition of colloidal organic material in marine environments. <i>Marine Chemistry</i> ,	10.3	71 61
48 47 46	Galveston Bay and Tampa Bay sediment cores. <i>Marine Environmental Research</i> , 2001 , 52, 51-79 Effect of dissolved organic matter on the uptake of trace metals by American oysters. <i>Environmental Science & Discourse (Marine Chemistry</i> , 2001 , 35, 885-93 Organic complexation of copper in surface waters of Galveston Bay. <i>Limnology and Oceanography</i> , 2001 , 46, 321-330 Trace metal composition of colloidal organic material in marine environments. <i>Marine Chemistry</i> , 2000 , 70, 257-275 Re-examination of cross-flow ultrafiltration for sampling aquatic colloids: evidence from molecular	10.3 4.8 3.7	71 61 78
48 47 46 45	Effect of dissolved organic matter on the uptake of trace metals by American oysters. Environmental Science & Environmental S	10.3 4.8 3.7	71 61 78
48 47 46 45 44	Effect of dissolved organic matter on the uptake of trace metals by American oysters. Environmental Science & Department of Copper in Surface waters of Galveston Bay. Limnology and Oceanography, 2001, 46, 321-330 Trace metal composition of colloidal organic material in marine environments. Marine Chemistry, 2000, 70, 257-275 Re-examination of cross-flow ultrafiltration for sampling aquatic colloids: evidence from molecular probes. Marine Chemistry, 2000, 69, 75-90 Benthic exchange of nutrients in Galveston Bay, Texas. Estuaries and Coasts, 2000, 23, 647 The distribution of biogenic thiols in surface waters of Galveston Bay. Limnology and Oceanography,	10.3 4.8 3.7 3.7	71 61 78 114 40

(1996-2000)

40	The 129iodine bomb pulse recorded in Mississippi River Delta sediments: results from isotopes of I, Pu, Cs, Pb, and C. <i>Geochimica Et Cosmochimica Acta</i> , 2000 , 64, 989-996	5.5	72
39	Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. <i>Marine Chemistry</i> , 1999 , 63, 185-212	3.7	201
38	Boundary exchange and scavenging of radionuclides in continental margin waters of the Middle Atlantic Bight: implications for organic carbon fluxes. <i>Continental Shelf Research</i> , 1999 , 19, 609-636	2.4	70
37	Atmospheric Dispersal of 129 Iodine from Nuclear Fuel Reprocessing Facilities. <i>Environmental Science & Environmental </i>	10.3	155
36	Sediment Transport and Hg Recovery in Lavaca Bay, as Evaluated from Radionuclide and Hg Distributions. <i>Environmental Science & Environmental Science </i>	10.3	44
35	Modeling Variability in 210Pb and Sediment Fluxes Near the Whites Point Outfalls, Palos Verdes Shelf, California. <i>Environmental Science & Environmental Science</i> 33, 3077-3085	10.3	15
34	Comparative bioaccumulation studies of colloidally complexed and free-ionic heavy metals in juvenile brown shrimp Penaeus aztecus (Crustacea: Decapoda: Penaeidae). <i>Limnology and Oceanography</i> , 1999 , 44, 403-414	4.8	39
33	Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. <i>Limnology and Oceanography</i> , 1998 , 43, 896-908	4.8	133
32	Colloidal and Particulate Silver in River and Estuarine Waters of Texas. <i>Environmental Science & Technology</i> , 1997 , 31, 723-731	10.3	117
31	Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping. <i>Geochimica Et Cosmochimica Acta</i> , 1997 , 61, 2867-2878	5.5	80
30	Composition and cycling of colloids in marine environments. <i>Reviews of Geophysics</i> , 1997 , 35, 17-40	23.1	105
29	Sources and transport of land-derived particulate and dissolved organic matter in the Gulf of Mexico (Texas shelf/slope): The use of ligninphenols and loliolides as biomarkers. <i>Organic Geochemistry</i> , 1997 , 27, 65-78	3.1	77
28	Isotopic and elemental characterization of colloidal organic matter from the Chesapeake Bay and Galveston Bay. <i>Marine Chemistry</i> , 1997 , 59, 1-15	3.7	106
27	Interactions of thorium isotopes with colloidal organic matter in oceanic environments. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1997 , 120, 255-271	5.1	56
26	Heterogeneous processes affecting trace contaminant distribution in estuaries: The role of natural organic matter. <i>Marine Chemistry</i> , 1997 , 58, 99-125	3.7	150
25	Colloidal Pumping: Evidence for the Coagulation Process Using Natural Colloids Tagged with 203Hg. <i>Environmental Science & Enp.; Technology</i> , 1996 , 30, 3335-3340	10.3	65
24	Evidence for elevated levels of iodine-129 in the Deep Western Boundary Current in the Middle Atlantic Bight. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 1996 , 43, 259-265	2.5	33
23	234 Th: 238 U disequilibria in the Gulf of Mexico: the importance of organic matter and particle concentration. <i>Continental Shelf Research</i> , 1996 , 16, 353-380	2.4	57

22	An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. <i>Marine Chemistry</i> , 1996 , 55, 129-152	3.7	105
21	Thorium sorption in the marine environment: Equilibrium partitioning at the hematite/water interface, sorption/desorption kinetics and particle tracing. <i>Aquatic Geochemistry</i> , 1996 , 1, 277-301	1.7	35
20	A critical evaluation of the cross-flow ultrafiltration technique for sampling colloidal organic carbon in seawater. <i>Marine Chemistry</i> , 1996 , 55, 113-127	3.7	149
19	Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic (13C and 14C) signatures. <i>Limnology and Oceanography</i> , 1996 , 41, 1242-1252	4.8	104
18	History of trace metal pollution in sabine-neches estuary, beaumont, Texas. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	115
17	Seasonality in nutrient concentrations in Galveston Bay. <i>Marine Environmental Research</i> , 1995 , 40, 337-3	3623	38
16	Distribution of dissolved and particulate230Th and232Th in seawater from the Gulf of Mexico and off Cape Hatteras as measured by SIMS. <i>Earth and Planetary Science Letters</i> , 1995 , 133, 117-128	5.3	69
15	129I in Gulf of Mexico waters. Earth and Planetary Science Letters, 1995 , 135, 131-138	5.3	82
14	Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments. <i>Geochimica Et Cosmochimica Acta</i> , 1995 , 59, 625-631	5.5	158
13	Dynamics of dissolved organic carbon (DOC) in oceanic environments. <i>Limnology and Oceanography</i> , 1995 , 40, 1392-1403	4.8	155
12	Plant pigments as biomarkers of high-molecular-weight dissolved organic carbon. <i>Limnology and Oceanography</i> , 1995 , 40, 422-428	4.8	35
11	Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries. <i>Marine Chemistry</i> , 1994 , 45, 307-336	3.7	283
10	The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. <i>Marine Chemistry</i> , 1994 , 45, 105-119	3.7	182
9	A method for rapid in situ extraction and laboratory determination of Th, Pb, and Ra isotopes from large volumes of seawater. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 1993 , 40, 849-865	2.5	54
8	Trace metal chemistry of Galveston Bay: water, sediments and biota. <i>Marine Environmental Research</i> , 1993 , 36, 1-37	3.3	83
7	The role of particles and colloids in the transport of radionuclides in coastal environments of Texas. <i>Marine Chemistry</i> , 1993 , 43, 95-114	3.7	138
6	Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico. <i>Geochimica Et Cosmochimica Acta</i> , 1992 , 56, 3375-3388	5.5	138
5	Coupling adsorption and particle aggregation: laboratory studies of "colloidal pumping" using iron-59-labeled hematite. <i>Environmental Science & Environmental Science & Envir</i>	10.3	97

LIST OF PUBLICATIONS

4	Metals in aquatic systems. Environmental Science & Env	10.3	290
3	Natural (210Pb, 7Be) and fallout (137Cs, 239,240Pu, 90Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland. <i>Chemical Geology</i> , 1987 , 63, 181-196	4.2	120
2	A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. <i>Geochimica Et Cosmochimica Acta</i> , 1984 , 48, 1513-1522	5.5	326
1	Thorium isotopes as analogues for particle-reactivepollutants in coastal marine environments. <i>Earth and Planetary Science Letters</i> , 1980 , 47, 327-335	5.3	80