Goran Turkalj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527404/publications.pdf

Version: 2024-02-01

		516215	610482
58	681	16	24
papers	citations	h-index	g-index
58	58	58	357
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison of classical and refined beam models applied on isotropic and FG thin-walled beams in nonlinear buckling response. Composite Structures, 2019, 229, 111490.	3.1	11
2	Multiparametric Investigation of Welding Techniques on Toe Radius of High Strength Steel at Low-Temperature Levels Using 3D-Scanning Techniques. Metals, 2019, 9, 1355.	1.0	3
3	A shear-deformable beam model for stability analysis of orthotropic composite semi-rigid frames. Composite Structures, 2018, 189, 648-660.	3.1	3
4	Analysis of Flexure, Torsion and Buckling of Thin-Walled Frames with a Focus on the Joint Warping Behaviour. Transactions of Famena, 2018, 41, 1-10.	0.3	0
5	Uniaxial Properties versus Temperature, Creep and Impact Energy of an Austenitic Steel. High Temperature Materials and Processes, 2017, 36, 135-143.	0.6	0
6	Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13. Materials, 2017, 10, 388.	1.3	8
7	10.34: Creep properties of grade S275JR steel at high temperature. Ce/Papers, 2017, 1, 2806-2810.	0.1	1
8	Finite Element Stress Analysis of Elastic Beams under Non-Uniform Torsion. Transactions of Famena, 2016, 40, 71-82.	0.3	5
9	Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel. Materials, 2016, 9, 298.	1.3	16
10	Nonlinear buckling behaviours of thin-walled functionally graded open section beams. Composite Structures, 2016, 152, 829-839.	3.1	41
11	Changes in the Material Properties of Steel 1.4762 Depending on the Temperature. High Temperature Materials and Processes, 2016, 35, 761-767.	0.6	0
12	Non-linear global stability analysis of thin-walled laminated beam-type structures. Computers and Structures, 2016, 173, 19-30.	2.4	5
13	Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel. Steel and Composite Structures, 2016, 22, 875-888.	1.3	7
14	Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4. High Temperature Materials and Processes, 2015, 34, .	0.6	11
15	Deformation behaviour and material properties of austenitic heat-resistant steel X15CrNiSi25-20 subjected to high temperatures and creep. Materials & Design, 2015, 69, 219-229.	5.1	18
16	A beam formulation for large displacement analysis of composite frames with semi-rigid connections. Composite Structures, 2015, 134, 237-246.	3.1	13
17	Buckling analysis of thin-walled functionally graded sandwich box beams. Thin-Walled Structures, 2015, 86, 148-156.	2.7	47
18	Information relevant for the design of structure: Ferritic – Heat resistant high chromium steel X10CrAlSi25. Materials & Design, 2014, 63, 508-518.	5.1	13

#	Article	IF	CITATIONS
19	Experimental determination and prediction of the mechanical properties of steel 1.7225. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 47-52.	2.6	10
20	Global buckling analysis model for thin-walled composite laminated beam type structures. Composite Structures, 2014, 111, 371-380.	3.1	29
21	Significance of experimental data in the design of structures made from 1.4057 steel. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 131-136.	0.4	3
22	Comparison of material properties: Steel 20MnCr5 and similar steels. Journal of Constructional Steel Research, 2014, 95, 81-89.	1.7	32
23	Mechanical testing of the behavior of steel 1.7147 at different temperatures. Steel and Composite Structures, 2014, 17, 549-560.	1.3	4
24	Optimal design of single-story steel building structures based on parametric MINLP optimization. Journal of Constructional Steel Research, 2013, 81, 86-103.	1.7	23
25	Analysis of experimental data on the behavior of steel S275JR – Reliability of modern design. Materials & Design, 2013, 47, 497-504.	5.1	33
26	Testing and analysis of X39CrMo17-1 steel properties. Construction and Building Materials, 2013, 44, 293-301.	3.2	9
27	Numerical Simulation of Large-Displacement Behaviour of Thin-Walled Frames Incorporating Joint Action., 2013,, 127-132.		1
28	Experimental Research and Analysis of Non-alloy Structural Steel Response Exposed to High Temperature Conditions. High Temperature Materials and Processes, 2013, 32, 163-169.	0.6	0
29	Analysis of the Dependence of Material Properties on Temperature – Steel 1.4122. High Temperature Materials and Processes, 2012, 31, .	0.6	3
30	UPDATED LAGRANGIAN FORMULATION FOR NONLINEAR STABILITY ANALYSIS OF THIN-WALLED FRAMES WITH SEMI-RIGID CONNECTIONS. International Journal of Structural Stability and Dynamics, 2012, 12, 1250013.	1.5	8
31	Responses of Austenitic Stainless Steel American Iron and Steel Institute (AISI) 303 (1.4305) Subjected to Different Environmental Conditions. Journal of Testing and Evaluation, 2012, 40, 319-328.	0.4	8
32	Importance of Experimental Research in the Design of Structures. Annals of DAAAM & Proceedings, 2012, , 0147-0150.	0.1	2
33	Crack driving force prediction based on finite element analysis using standard models. Structural Engineering and Mechanics, 2012, 44, 601-609.	1.0	1
34	Martensitic stainless steel AISI 420â€"mechanical properties, creep and fracture toughness. Mechanics of Time-Dependent Materials, 2011, 15, 341-352.	2.3	38
35	AISI 316Ti (1.4571) steel—Mechanical, creep and fracture properties versus temperature. Journal of Constructional Steel Research, 2011, 67, 1948-1952.	1.7	36
36	A beam model for large displacement analysis of flexibly connected thin-walled beam-type structures. Thin-Walled Structures, 2011, 49, 1007-1016.	2.7	14

#	Article	IF	CITATIONS
37	Loading and Responses of Austenitic Stainless Steels at Elevated Temperatures. High Temperature Materials and Processes, 2011, 30, .	0.6	O
38	Effect of Elevated Temperatures on Behavior of Structural Steel 50CrMo4. High Temperature Materials and Processes, 2011, 30, .	0.6	2
39	Experimental determination of mechanical properties and short-time creep of AISI 304 stainless steel at elevated temperatures. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 39-45.	2.4	6
40	Behavior of HSLA A709 steel under different environmental conditions. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 897-902.	0.4	2
41	Behaviour of S 355JO steel subjected to uniaxial stress at lowered and elevated temperatures and creep. Bulletin of Materials Science, 2010, 33, 475-481.	0.8	15
42	Shear stress analysis in engineering beams using deplanation field of special 2-D finite elements. Meccanica, 2010, 45, 227-235.	1.2	9
43	Structural Steel ASTM A709â€"Behavior at Uniaxial Tests Conducted at Lowered and Elevated Temperatures, Short-Time Creep Response, and Fracture Toughness Calculation. Journal of Engineering Mechanics - ASCE, 2010, 136, 1083-1089.	1.6	24
44	50CrMo4 Steel-Determination of Mechanical Properties at Lowered and Elevated Temperatures, Creep Behavior, and Fracture Toughness Calculation. Journal of Engineering Materials and Technology, Transactions of the ASME, 2010, 132, .	0.8	13
45	LARGE DISPLACEMENT BEAM MODEL FOR CREEP BUCKLING ANALYSIS OF FRAMED STRUCTURES. International Journal of Structural Stability and Dynamics, 2009, 09, 61-83.	1.5	8
46	Large-displacement analysis of beam-type structures considering elastic–plastic material behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 142-146.	2.6	2
47	Creep behavior of high-strength low-alloy steel at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 23-27.	2.6	33
48	Numerical simulation of instability behaviour of thin-walled frames with flexible connections. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 74-77.	2.6	3
49	Tool Material Behavior at Elevated Temperatures. Materials and Manufacturing Processes, 2009, 24, 758-762.	2.7	23
50	Comparison of Both Creep Resistance and Material Properties of High-Strength Low-Alloy Steel and Stainless Steel. Journal of Testing and Evaluation, 2009, 37, 358-363.	0.4	0
51	Finite-element modelling and shear stress analysis of engineering structural elements. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222, 861-872.	0.7	1
52	Numerical Model for Buckling Analysis of Flexibly Connected Beam-type Structures. , 2008, , 353-360.		0
53	Large Displacement Analysis of Spatial Frames under Creep Regime. , 2008, , 229-236.		0
54	Finite-element model for creep buckling analysis of beam-type structures. Communications in Numerical Methods in Engineering, 2007, 24, 989-1008.	1.3	4

Goran Turkalj

#	Article	IF	CITATION
55	NONLINEAR STABILITY ANALYSIS OF THIN-WALLED FRAMES USING UL–ESA FORMULATION. International Journal of Structural Stability and Dynamics, 2004, 04, 45-67.	1.5	17
56	ESA formulation for large displacement analysis of framed structures with elastic–plasticity. Computers and Structures, 2004, 82, 2001-2013.	2.4	18
57	Large rotation analysis of elastic thin-walled beam-type structures using ESA approach. Computers and Structures, 2003, 81, 1851-1864.	2.4	42
58	Comparison of Material Properties and Creep Behavior of 20MnCr5 and S275JR Steels. Materials Science Forum, 0, 762, 47-54.	0.3	3