Stephen M Strittmatter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron, 2022, 110, 452-469.e14.	8.1	142
2	Translational PET Imaging of Spinal Cord Injury with the Serotonin Transporter Tracer [11C]AFM. Molecular Imaging and Biology, 2022, , 1.	2.6	0
3	PET Imaging of Synaptic Density: Challenges and Opportunities of Synaptic Vesicle Glycoprotein 2A PET in Small Animal Imaging. Frontiers in Neuroscience, 2022, 16, 787404.	2.8	5
4	Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Experimental Neurology, 2022, 353, 114070.	4.1	5
5	Multimodal imaging of synaptic vesicles with a single probe. Cell Reports Methods, 2022, 2, 100199.	2.9	1
6	Alzheimer risk gene product Pyk2 suppresses tau phosphorylation and phenotypic effects of tauopathy. Molecular Neurodegeneration, 2022, 17, 32.	10.8	15
7	Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Science Translational Medicine, 2022, 14, .	12.4	38
8	Fronto-temporal dementia risk gene <i>TMEM106B</i> has opposing effects in different lysosomal storage disorders. Brain Communications, 2021, 3, fcaa200.	3.3	5
9	Quantification of SV2A Binding in Rodent Brain Using [18F]SynVesT-1 and PET Imaging. Molecular Imaging and Biology, 2021, 23, 372-381.	2.6	20
10	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	9.0	144
11	B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF. Scientific Reports, 2021, 11, 2890.	3.3	11
12	Optic nerve regeneration screen identifies multiple genes restricting adult neural repair. Cell Reports, 2021, 34, 108777.	6.4	34
13	Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-1². Journal of Biological Chemistry, 2021, 297, 101159.	3.4	10
14	NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nature Communications, 2021, 12, 6906.	12.8	14
15	A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regeneration. Journal of Biological Chemistry, 2020, 295, 2175-2183.	3.4	23
16	Gene-environment interaction promotes Alzheimer's risk as revealed by synergy of repeated mild traumatic brain injury and mouse App knock-in. Neurobiology of Disease, 2020, 145, 105059.	4.4	2
17	Elucidating the role of the AD risk factor Pyk2 in tauâ€induced neuronal dysfunction. Alzheimer's and Dementia, 2020, 16, e036625.	0.8	0
18	PBR28 Brain PET imaging with lipopolysaccharide challenge for the study of microglia function in Alzheimer's disease, Alzheimer's and Dementia, 2020, 16, e037792	0.8	0

#	Article	IF	CITATIONS
19	11Câ€PBR28 brain PET imaging with lipopolysaccharide challenge for the study of microglia function in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043584.	0.8	0
20	Chronic head injury promotes tau and amyloidâ€beta pathology and accelerates cognitive decline in a humanized knockâ€in model of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e047623.	0.8	2
21	Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain, 2020, 143, 1697-1713.	7.6	38
22	Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathologica Communications, 2020, 8, 96.	5.2	39
23	PET imaging of mGluR5 in Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 15.	6.2	29
24	The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. Journal of Cell Biology, 2020, 219, .	5.2	11
25	Whole-Exome Sequencing of an Exceptional Longevity Cohort. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1386-1390.	3.6	14
26	Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Disease. JAMA Neurology, 2019, 76, 1219.	9.0	107
27	Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination. Journal of Neuroscience, 2019, 39, 5562-5580.	3.6	16
28	In Vivo Synaptic Density Imaging with ¹¹ C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease. Journal of Nuclear Medicine, 2019, 60, 1780-1786.	5.0	57
29	Antiâ€₽rP ^C antibody rescues cognition and synapses in transgenic alzheimer mice. Annals of Clinical and Translational Neurology, 2019, 6, 554-574.	3.7	24
30	Systematic and standardized comparison of reported amyloid-β receptors for sufficiency, affinity, and Alzheimer's disease relevance. Journal of Biological Chemistry, 2019, 294, 6042-6053.	3.4	54
31	Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma. Journal of Neuroscience, 2019, 39, 3204-3216.	3.6	23
32	ICâ€Pâ€140: ASSOCIATION BETWEEN MGLUR5 AND SYNAPTIC DENSITY: A MULTIâ€TRACER STUDY IN HEALTHY / AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P115.	agiyg	0
33	Rescue of Transgenic Alzheimer's Pathophysiology by Polymeric Cellular Prion Protein Antagonists. Cell Reports, 2019, 26, 145-158.e8.	6.4	27
34	Pyk2 Signaling through Graf1 and RhoA GTPase Is Required for Amyloid-β Oligomer-Triggered Synapse Loss. Journal of Neuroscience, 2019, 39, 1910-1929.	3.6	36
35	Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. Journal of Neuroscience, 2019, 39, 758-772.	3.6	61
36	Diltiazem Promotes Regenerative Axon Growth. Molecular Neurobiology, 2019, 56, 3948-3957.	4.0	19

#	Article	IF	CITATIONS
37	The nociceptin receptor inhibits axonal regeneration and recovery from spinal cord injury. Science Signaling, 2018, 11, .	3.6	21
38	Synaptotoxic Signaling by Amyloid Beta Oligomers in Alzheimer's Disease Through Prion Protein and mGluR5. Advances in Pharmacology, 2018, 82, 293-323.	2.0	67
39	Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration. Cell Reports, 2018, 23, 415-428.	6.4	43
40	Emerging Mechanisms in Alzheimer's Disease and Their Therapeutic Implications. Biological Psychiatry, 2018, 83, 298-299.	1.3	3
41	Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer's model. Neuropharmacology, 2018, 130, 54-61.	4.1	42
42	P1â€469: PET IMAGING OF METABOTROPIC GLUTAMATE RECEPTOR 5 BINDING IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P501.	0.8	1
43	ICâ€04â€03: PET IMAGING OF METABOTROPIC GLUTAMATE RECEPTOR 5 BINDING IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P8.	0.8	0
44	Liquid and Hydrogel Phases of PrPC Linked to Conformation Shifts and Triggered by Alzheimer's Amyloid-β Oligomers. Molecular Cell, 2018, 72, 426-443.e12.	9.7	87
45	Sleep and EEG Power Spectral Analysis in Three Transgenic Mouse Models of Alzheimer's Disease: APP/PS1, 3xTgAD, and Tg2576. Journal of Alzheimer's Disease, 2018, 64, 1325-1336.	2.6	55
46	Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit. Nature Communications, 2018, 9, 3419.	12.8	60
47	Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathologica, 2017, 133, 785-807.	7.7	67
48	Protein Tyrosine Phosphatase δ Mediates the Sema3A-Induced Cortical Basal Dendritic Arborization through the Activation of Fyn Tyrosine Kinase. Journal of Neuroscience, 2017, 37, 7125-7139.	3.6	25
49	Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury. Cell Reports, 2017, 18, 2687-2701.	6.4	73
50	Rewiring the spinal cord: Direct and indirect strategies. Neuroscience Letters, 2017, 652, 25-34.	2.1	27
51	Binding Sites for Amyloid-Î ² Oligomers and Synaptic Toxicity. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024075.	6.2	76
52	Conditional Deletion of <i>Prnp</i> Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 9207-9221.	3.6	45
53	Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS. Scientific Reports, 2017, 7, 12119.	3.3	23
54	Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient Mice. Neuron, 2017, 95, 281-296.e6.	8.1	131

#	Article	IF	CITATIONS
55	Silent Allosteric Modulation of mGluR5 Maintains Glutamate Signaling while Rescuing Alzheimer's Mouse Phenotypes. Cell Reports, 2017, 20, 76-88.	6.4	84
56	Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer's disease. Biochemical and Biophysical Research Communications, 2017, 483, 1143-1147.	2.1	72
57	Inhibiting poly(ADP-ribosylation) improves axon regeneration. ELife, 2016, 5, .	6.0	38
58	Early Activation of Experience-Independent Dendritic Spine Turnover in a Mouse Model of Alzheimer's Disease. Cerebral Cortex, 2016, 27, 3660-3674.	2.9	20
59	Axonal branching in lateral olfactory tract is promoted by Nogo signaling. Scientific Reports, 2016, 6, 39586.	3.3	11
60	Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1833-1842.	3.3	79
61	SCISSOR—Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open, 2016, 6, e010651.	1.9	17
62	Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia. Cell Reports, 2016, 16, 2576-2592.	6.4	253
63	Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease. Journal of Biological Chemistry, 2016, 291, 17112-17121.	3.4	65
64	Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain, 2016, 139, 526-546.	7.6	110
65	Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury. ENeuro, 2016, 3, ENEURO.0270-16.2016.	1.9	22
66	Prion-Protein-interacting Amyloid-β Oligomers of High Molecular Weight Are Tightly Correlated with Memory Impairment in Multiple Alzheimer Mouse Models. Journal of Biological Chemistry, 2015, 290, 17415-17438.	3.4	104
67	Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer's disease mouse model. Alzheimer's Research and Therapy, 2015, 7, 25.	6.2	76
68	Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal of Neuroscience, 2015, 35, 1443-1457.	3.6	61
69	<scp>F</scp> yn inhibition rescues established memory and synapse loss in <scp>A</scp> lzheimer mice. Annals of Neurology, 2015, 77, 953-971.	5.3	282
70	Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. Journal of Neuroscience, 2015, 35, 10429-10439.	3.6	34
71	Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway. Journal of Cell Biology, 2015, 209, 85-95.	5.2	75
72	A phase lb multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer's disease. Alzheimer's Research and Therapy, 2015, 7, 35.	6.2	129

#	Article	IF	CITATIONS
73	Intravitreal Delivery of Human NgR-Fc Decoy Protein Regenerates Axons After Optic Nerve Crush and Protects Ganglion Cells in Glaucoma Models. Investigative Ophthalmology and Visual Science, 2015, 56, 1357-1366.	3.3	33
74	Comprehensive Corticospinal Labeling with <i>mu-crystallin</i> Transgene Reveals Axon Regeneration after Spinal Cord Trauma in <i>ngr1</i> ^{â^'/â^'} Mice. Journal of Neuroscience, 2015, 35, 15403-15418.	3.6	40
75	Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion. Journal of Neurotrauma, 2014, 31, 1955-1966.	3.4	32
76	Nogo limits neural plasticity and recovery from injury. Current Opinion in Neurobiology, 2014, 27, 53-60.	4.2	318
77	Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice. Brain Research, 2014, 1588, 168-174.	2.2	31
78	Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Molecular and Cellular Neurosciences, 2014, 61, 226-240.	2.2	102
79	Fyn kinase inhibition as a novel therapy for Alzheimer's disease. Alzheimer's Research and Therapy, 2014, 6, 8.	6.2	160
80	Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery. Journal of Neurotrauma, 2014, 31, 1362-1373.	3.4	62
81	Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5). Journal of Biological Chemistry, 2014, 289, 28460-28477.	3.4	70
82	Overcoming Drug Development Bottlenecks With Repurposing: Old drugs learn new tricks. Nature Medicine, 2014, 20, 590-591.	30.7	169
83	The Nogo Receptor NgR1 Mediates Infection by Mammalian Reovirus. Cell Host and Microbe, 2014, 15, 681-691.	11.0	71
84	Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer AÎ ² Oligomer Bound to Cellular Prion Protein. Neuron, 2013, 79, 887-902.	8.1	485
85	Multimodal exercises simultaneously stimulating cortical and brainstem pathways after unilateral corticospinal lesion. Brain Research, 2013, 1538, 17-25.	2.2	7
86	Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1. Neuron, 2013, 77, 859-866.	8.1	106
87	Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion, 2013, 7, 37-41.	1.8	114
88	LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures—A tentative mouse model for claustrophobia-like behaviour. Behavioural Brain Research, 2013, 238, 69-78.	2.2	20
89	Delayed amyloid plaque deposition and behavioral deficits in outcrossed AÎ ² PP/PS1 mice. Journal of Comparative Neurology, 2013, 521, 1395-1408.	1.6	5
90	167 Diffusion Tensor Imaging as a Predictor of Experimental Spinal Cord Injury Severity and Recovery. Neurosurgery, 2013, 60, 175-176.	1.1	3

#	Article	IF	CITATIONS
91	Role of Cellular Prion Protein in the Amyloid-β Oligomer Pathophysiology of Alzheimer's Disease. , 2013, , 35-48.		0
92	Vps10 Family Proteins and the Retromer Complex in Aging-Related Neurodegeneration and Diabetes. Journal of Neuroscience, 2012, 32, 14080-14086.	3.6	65
93	Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain, 2012, 135, 1794-1818.	7.6	107
94	Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5063-5068.	7.1	73
95	Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways. Experimental Neurology, 2012, 237, 55-69.	4.1	54
96	Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nature Neuroscience, 2012, 15, 1227-1235.	14.8	572
97	PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Molecular and Cellular Neurosciences, 2012, 50, 193-200.	2.2	35
98	Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell and Tissue Research, 2012, 349, 119-132.	2.9	61
99	Myelin associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental Neurology, 2012, 235, 43-52.	4.1	120
100	Fine Mapping of Genetic Variants in BIN1, CLU, CR1 and PICALM for Association with Cerebrospinal Fluid Biomarkers for Alzheimer's Disease. PLoS ONE, 2011, 6, e15918.	2.5	64
101	Recovery from chronic spinal cord contusion after nogo receptor intervention. Annals of Neurology, 2011, 70, 805-821.	5.3	87
102	Spatial patterns of brain amyloid-Â burden and atrophy rate associations in mild cognitive impairment. Brain, 2011, 134, 1077-1088.	7.6	97
103	Mild Cognitive Impairment: Baseline and Longitudinal Structural MR Imaging Measures Improve Predictive Prognosis. Radiology, 2011, 259, 834-843.	7.3	84
104	Inosine Augments the Effects of a Nogo Receptor Blocker and of Environmental Enrichment to Restore Skilled Forelimb Use after Stroke. Journal of Neuroscience, 2011, 31, 5977-5988.	3.6	73
105	Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation. Science, 2011, 333, 769-773.	12.6	86
106	Membrane-type Matrix Metalloproteinase-3 Regulates Neuronal Responsiveness to Myelin through Nogo-66 Receptor 1 Cleavage. Journal of Biological Chemistry, 2011, 286, 31418-31424.	3.4	30
107	Differential but Competitive Binding of Nogo Protein and Class I Major Histocompatibility Complex (MHCI) to the PIR-B Ectodomain Provides an Inhibition of Cells. Journal of Biological Chemistry, 2011, 286, 25739-25747.	3.4	31
108	A Multi-domain Fragment of Nogo-A Protein Is a Potent Inhibitor of Cortical Axon Regeneration via Nogo Receptor 1. Journal of Biological Chemistry, 2011, 286, 18026-18036.	3.4	58

#	Article	IF	CITATIONS
109	β-amyloid oligomers and cellular prion protein in Alzheimer's disease. Journal of Molecular Medicine, 2010, 88, 331-338.	3.9	75
110	Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an alzheimer's disease model mouse. BMC Neuroscience, 2010, 11, 130.	1.9	158
111	Laurén et al. reply. Nature, 2010, 466, E4-E5.	27.8	13
112	Semaphorins and their Receptors in Vertebrates and Invertebrates. , 2010, , 1961-1966.		0
113	Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19014-19019.	7.1	179
114	Nogo Receptor Deletion and Multimodal Exercise Improve Distinct Aspects of Recovery in Cervical Spinal Cord Injury. Journal of Neurotrauma, 2010, 27, 2055-2066.	3.4	19
115	Segmentation of rat spinal cord in PET using spatiotemporal information. , 2010, , .		0
116	Genetic Deletion and Pharmacological Inhibition of Nogo-66 Receptor Impairs Cognitive Outcome after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2010, 27, 1297-1309.	3.4	42
117	MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. Journal of Neuroscience, 2010, 30, 6825-6837.	3.6	237
118	Lynx for Braking Plasticity. Science, 2010, 330, 1189-1190.	12.6	7
119	Combination of NEP 1-40 Treatment and Motor Training Enhances Behavioral Recovery After a Focal Cortical Infarct in Rats. Stroke, 2010, 41, 544-549.	2.0	88
120	Longitudinal Changes in White Matter Disease and Cognition in the First Year of the Alzheimer Disease Neuroimaging Initiative. Archives of Neurology, 2010, 67, 1370.	4.5	216
121	Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion Protein. Journal of Neuroscience, 2010, 30, 6367-6374.	3.6	374
122	Protein Tyrosine Phosphatase δdephospholyrates c-Src in Sema3A signaling. Neuroscience Research, 2010, 68, e136.	1.9	0
123	Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin. Neuron, 2010, 68, 654-667.	8.1	465
124	Inosine Alters Gene Expression and Axonal Projections in Neurons Contralateral to a Cortical Infarct and Improves Skilled Use of the Impaired Limb. Journal of Neuroscience, 2009, 29, 8187-8197.	3.6	93
125	Ibuprofen Enhances Recovery from Spinal Cord Injury by Limiting Tissue Loss and Stimulating Axonal Growth. Journal of Neurotrauma, 2009, 26, 81-95.	3.4	79
126	Reticulon-4A (Nogo-A) Redistributes Protein Disulfide Isomerase to Protect Mice from SOD1-Dependent Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2009, 29, 13850-13859.	3.6	96

#	Article	IF	CITATIONS
127	Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord. Journal of Neuroscience, 2009, 29, 15266-15276.	3.6	109
128	Cellular Prion Protein Mediates the Toxicity of β-Amyloid Oligomers. Archives of Neurology, 2009, 66, 1325-8.	4.5	64
129	Impediments to eye transplantation: ocular viability following optic-nerve transection or enucleation. British Journal of Ophthalmology, 2009, 93, 1134-1140.	3.9	25
130	Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature, 2009, 457, 1128-1132.	27.8	1,390
131	An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers. Neuron, 2009, 61, 734-749.	8.1	322
132	Functional outcome is impaired following traumatic brain injury in aging Nogo-A/B-deficient mice. Neuroscience, 2009, 163, 540-551.	2.3	36
133	LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology. Molecular and Cellular Neurosciences, 2009, 42, 448-457.	2.2	84
134	Serum Nogo-A levels are not elevated in amyotrophic lateral sclerosis patients. Biomarkers, 2009, 14, 414-417.	1.9	9
135	Axon Regeneration in the Peripheral and Central Nervous Systems. Results and Problems in Cell Differentiation, 2009, 48, 305-360.	0.7	241
136	No association between schizophrenia and polymorphisms of the PlexinA2 gene in Chinese Han Trios. Schizophrenia Research, 2008, 99, 365-366.	2.0	12
137	Axonal growth therapeutics: regeneration or sprouting or plasticity?. Trends in Neurosciences, 2008, 31, 215-220.	8.6	178
138	Functional MRI and other non-invasive imaging technologies: Providing visual biomarkers for spinal cord structure and function after injury. Experimental Neurology, 2008, 211, 324-328.	4.1	17
139	PET Imaging of serotonin transporter as a biomarker for axon damage and regeneration in spinal cord injury. Neurolmage, 2008, 41, T154.	4.2	0
140	Nogo-66 Receptor Antagonist Peptide (NEP1-40) Administration Promotes Functional Recovery and Axonal Growth After Lateral Funiculus Injury in the Adult Rat. Neurorehabilitation and Neural Repair, 2008, 22, 262-278.	2.9	87
141	Genetic Variants of Nogo-66 Receptor with Possible Association to Schizophrenia Block Myelin Inhibition of Axon Growth. Journal of Neuroscience, 2008, 28, 13161-13172.	3.6	98
142	Release of MICAL Autoinhibition by Semaphorin-Plexin Signaling Promotes Interaction with Collapsin Response Mediator Protein. Journal of Neuroscience, 2008, 28, 2287-2297.	3.6	93
143	The N-Terminal Domain of Nogo-A Inhibits Cell Adhesion and Axonal Outgrowth by an Integrin-Specific Mechanism. Journal of Neuroscience, 2008, 28, 1262-1269.	3.6	126
144	Toll-Like Receptor 3 Is a Potent Negative Regulator of Axonal Growth in Mammals. Journal of Neuroscience, 2007, 27, 13033-13041.	3.6	191

#	Article	IF	CITATIONS
145	Functional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans. Journal of Neuroscience, 2007, 27, 2176-2185.	3.6	198
146	Characterization of Myelin Ligand Complexes with Neuronal Nogo-66 Receptor Family Members. Journal of Biological Chemistry, 2007, 282, 5715-5725.	3.4	77
147	The Dawn of Molecular and Cellular Therapies for Traumatic Spinal Cord Injury. , 2007, , 207-220.		0
148	Nogo Receptor Interacts with Brain APP and Aβ to Reduce Pathologic Changes in Alzheimers Transgenic Mice. Current Alzheimer Research, 2007, 4, 568-570.	1.4	27
149	ROCK and Rho: Biochemistry and Neuronal Functions of Rho-Associated Protein Kinases. Neuroscientist, 2007, 13, 454-469.	3.5	145
150	The CRMP Family of Proteins and Their Role in Sema3A Signaling. Advances in Experimental Medicine and Biology, 2007, 600, 1-11.	1.6	168
151	Response to Correspondence: Kim etÂal., "Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.― Neuron 38, 187–199. Neuron, 2007, 54, 195-199.	8.1	29
152	The reticulons: a family of proteins with diverse functions. Genome Biology, 2007, 8, 234.	9.6	180
153	Nogo-A marks motor neuron disease. Annals of Neurology, 2007, 62, 1-2.	5.3	5
154	LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 2007, 12, 1129-1139.	7.9	300
155	Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat. Experimental Neurology, 2006, 197, 70-83.	4.1	44
156	CNS Axon Regeneration and Nogo. CNS Neuroscience & Therapeutics, 2006, 6, 32-32.	4.0	0
157	Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?. Nature Reviews Neuroscience, 2006, 7, 603-616.	10.2	284
158	Delayed Nogo receptor therapy improves recovery from spinal cord contusion. Annals of Neurology, 2006, 60, 540-549.	5.3	105
159	Extracellular regulators of axonal growth in the adult central nervous system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1593-1610.	4.0	180
160	The Nogo-Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth. Journal of Neuroscience, 2006, 26, 12242-12250.	3.6	139
161	RanBPM Contributes to Semaphorin3A Signaling through Plexin-A Receptors. Journal of Neuroscience, 2006, 26, 4961-4969.	3.6	74
162	Subcutaneous Nogo Receptor Removes Brain Amyloid-Â and Improves Spatial Memory in Alzheimer's Transgenic Mice. Journal of Neuroscience, 2006, 26, 13279-13286.	3.6	99

#	Article	IF	CITATIONS
163	Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10997-11002.	7.1	128
164	Alzheimer Precursor Protein Interaction with the Nogo-66 Receptor Reduces Amyloid-Î ² Plaque Deposition. Journal of Neuroscience, 2006, 26, 1386-1395.	3.6	123
165	Axonal Regeneration and Recovery From Chronic Central Nervous System Injury. , 2006, , 1165-1172.		0
166	Effect of combined treatment with methylprednisolone and soluble Nogo-66 receptor after rat spinal cord injury. European Journal of Neuroscience, 2005, 22, 587-594.	2.6	57
167	Nogo-A Interacts with the Nogo-66 Receptor through Multiple Sites to Create an Isoform-Selective Subnanomolar Agonist. Journal of Neuroscience, 2005, 25, 5298-5304.	3.6	52
168	Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor. Science, 2005, 309, 2222-2226.	12.6	551
169	Promoting the Regeneration of Axons within the Central Nervous System. , 2005, , 433-xviii.		0
170	Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury. Molecular and Cellular Neurosciences, 2005, 29, 26-39.	2.2	103
171	A Neutralizing Anti-Nogo66 Receptor Monoclonal Antibody Reverses Inhibition of Neurite Outgrowth by Central Nervous System Myelin. Journal of Biological Chemistry, 2004, 279, 43780-43788.	3.4	56
172	Blockade of Nogo-66, Myelin-Associated Glycoprotein, and Oligodendrocyte Myelin Glycoprotein by Soluble Nogo-66 Receptor Promotes Axonal Sprouting and Recovery after Spinal Injury. Journal of Neuroscience, 2004, 24, 10511-10520.	3.6	285
173	Nogo Receptor Antagonism Promotes Stroke Recovery by Enhancing Axonal Plasticity. Journal of Neuroscience, 2004, 24, 6209-6217.	3.6	318
174	Neogenin mediates the action of repulsive guidance molecule. Nature Cell Biology, 2004, 6, 756-762.	10.3	238
175	RGM and its receptor neogenin regulate neuronal survival. Nature Cell Biology, 2004, 6, 749-755.	10.3	243
176	A new role for Nogo as a regulator of vascular remodeling. Nature Medicine, 2004, 10, 382-388.	30.7	220
177	Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO Journal, 2004, 23, 9-22.	7.8	130
178	Regulating axon growth within the postnatal central nervous system. Seminars in Perinatology, 2004, 28, 371-378.	2.5	44
179	Neonatal hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for human prematurity. Experimental Neurology, 2004, 189, 141-149.	4.1	51
180	Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury. Neuron, 2004, 44, 439-451.	8.1	311

#	Article	IF	CITATIONS
181	Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO Journal, 2003, 22, 3291-3302.	7.8	191
182	Targeting the Nogo Receptor to Treat Central Nervous System Injuries. Nature Reviews Drug Discovery, 2003, 2, 872-879.	46.4	80
183	The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends in Neurosciences, 2003, 26, 193-198.	8.6	277
184	Nogo-C is sufficient to delay nerve regeneration. Molecular and Cellular Neurosciences, 2003, 23, 451-459.	2.2	42
185	Axon Regeneration in Young Adult Mice Lacking Nogo-A/B. Neuron, 2003, 38, 187-199.	8.1	374
186	Rho Kinase Inhibition Enhances Axonal Regeneration in the Injured CNS. Journal of Neuroscience, 2003, 23, 1416-1423.	3.6	601
187	Delayed Systemic Nogo-66 Receptor Antagonist Promotes Recovery from Spinal Cord Injury. Journal of Neuroscience, 2003, 23, 4219-4227.	3.6	280
188	Fibroblast Growth Factor-Inducible-14 Is Induced in Axotomized Neurons and Promotes Neurite Outgrowth. Journal of Neuroscience, 2003, 23, 9675-9686.	3.6	185
189	Semaphorins and their Receptors in Vertebrates and Invertebrates. , 2003, , 877-881.		0
190	Chapter 25 Nogo and the Nogo-66 receptor. Progress in Brain Research, 2002, 137, 361-369.	1.4	66
191	Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor. Science, 2002, 297, 1190-1193.	12.6	528
192	Truncated Soluble Nogo Receptor Binds Nogo-66 and Blocks Inhibition of Axon Growth by Myelin. Journal of Neuroscience, 2002, 22, 8876-8883.	3.6	206
193	Small Proline-Rich Repeat Protein 1A Is Expressed by Axotomized Neurons and Promotes Axonal Outgrowth. Journal of Neuroscience, 2002, 22, 1303-1315.	3.6	265
194	Modulation of axonal regeneration in neurodegenerative disease. Journal of Molecular Neuroscience, 2002, 19, 117-121.	2.3	19
195	GAP-43 Augmentation of G Protein-Mediated Signal Transduction Is Regulated by Both Phosphorylation and Palmitoylation. Journal of Neurochemistry, 2002, 70, 983-992.	3.9	20
196	Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature, 2002, 417, 547-551.	27.8	647
197	Regenerating nerves follow the road more traveled. Nature Neuroscience, 2002, 5, 821-822.	14.8	25
198	Localization of Nogo-A and Nogo-66 Receptor Proteins at Sites of Axon–Myelin and Synaptic Contact. Journal of Neuroscience, 2002, 22, 5505-5515.	3.6	306

#	Article	IF	CITATIONS
199	PlexinA1 Autoinhibition by the Plexin Sema Domain. Neuron, 2001, 29, 429-439.	8.1	189
200	Nogo: A Molecular Determinant of Axonal Growth and Regeneration. Neuroscientist, 2001, 7, 377-386.	3.5	69
201	Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature, 2001, 409, 341-346.	27.8	1,012
202	Semaphorin-mediated axonal guidance via Rho-related G proteins. Current Opinion in Cell Biology, 2001, 13, 619-626.	5.4	166
203	Repulsive factors and axon regeneration in the CNS. Current Opinion in Neurobiology, 2001, 11, 89-94.	4.2	170
204	Molecular basis of semaphorin-mediated axon guidance. Journal of Neurobiology, 2000, 44, 219-229.	3.6	283
205	Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature, 2000, 403, 439-444.	27.8	1,065
206	Dendrites go up, axons go down. Nature, 2000, 404, 557-559.	27.8	12
207	Semaphorin3a Enhances Endocytosis at Sites of Receptor–F-Actin Colocalization during Growth Cone Collapse. Journal of Cell Biology, 2000, 149, 411-422.	5.2	186
208	Rho GTPases and axonal growth cone collapse. Methods in Enzymology, 2000, 325, 473-482.	1.0	25
209	Brainâ€Derived Neurotrophic Factor Induces Excitotoxic Sensitivity in Cultured Embryonic Rat Spinal Motor Neurons Through Activation of the Phosphatidylinositol 3â€Kinase Pathway. Journal of Neurochemistry, 2000, 74, 582-595.	3.9	55
210	Transduction of Inhibitory Signals by the Axonal Growth Cone. , 2000, , 131-153.		0
211	Isolation of Receptor Clones by Expression Screening in Xenopus Oocytes. , 1999, 128, 1-18.		7
212	A PDZ Protein Regulates the Distribution of the Transmembrane Semaphorin, M-SemF. Journal of Biological Chemistry, 1999, 274, 14137-14146.	3.4	110
213	Go protein-dependent survival of primary accessory olfactory neurons. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14106-14111.	7.1	53
214	Excitotoxic Death of a Subset of Embryonic Rat Motor Neurons In Vitro. Journal of Neurochemistry, 1999, 72, 500-513.	3.9	58
215	Sequence-specific cleavage of Huntingtin mRNA by catalytic DNA. Annals of Neurology, 1999, 46, 366-373.	5.3	63
216	Growth cone neuropilin-1 mediates collapsin-1/sema III facilitation of antero- and retrograde axoplasmic transport. Journal of Neurobiology, 1999, 39, 579-589.	3.6	44

#	Article	IF	CITATIONS
217	Plexin-Neuropilin-1 Complexes Form Functional Semaphorin-3A Receptors. Cell, 1999, 99, 59-69.	28.9	757
218	Growth cone neuropilin-1 mediates collapsin-1/sema III facilitation of antero- and retrograde axoplasmic transport. , 1999, 39, 579.		2
219	Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nature Neuroscience, 1998, 1, 487-493.	14.8	212
220	Neuropilin-1 Extracellular Domains Mediate Semaphorin D/III-Induced Growth Cone Collapse. Neuron, 1998, 21, 1093-1100.	8.1	264
221	The Role of Nitric Oxide and NMDA Receptors in the Development of Motor Neuron Dendrites. Journal of Neuroscience, 1998, 18, 10493-10501.	3.6	96
222	Neuronal and Non-Neuronal Collapsin-1 Binding Sites in Developing Chick Are Distinct from Other Semaphorin Binding Sites. Journal of Neuroscience, 1997, 17, 9183-9193.	3.6	41
223	Rac1 Mediates Collapsin-1-Induced Growth Cone Collapse. Journal of Neuroscience, 1997, 17, 6256-6263.	3.6	371
224	A novel action of collapsin: Collapsin-1 increases antero- and retrograde axoplasmic transport independently of growth cone collapse. Journal of Neurobiology, 1997, 33, 316-328.	3.6	71
225	Brain CRMP Forms Heterotetramers Similar to Liver Dihydropyrimidinase. Journal of Neurochemistry, 1997, 69, 2261-2269.	3.9	146
226	709 Facilitatory effect of collapsin on axoplasmic transport in mouse DRG neurons. Neuroscience Research, 1996, 25, S82.	1.9	1
227	A Family of Rat CRMP Genes Is Differentially Expressed in the Nervous System. Journal of Neuroscience, 1996, 16, 6197-6207.	3.6	339
228	P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10465-10470.	7.1	174
229	Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature, 1995, 376, 509-514.	27.8	675
230	Neuronal Guidance Molecules: Inhibitory and Soluble Factors. Neuroscientist, 1995, 1, 255-258.	3.5	10
231	Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell, 1995, 80, 445-452.	28.9	372
232	An activated mutant of the a subunit of Go increases neurite outgrowth via protein kinase C. Developmental Brain Research, 1995, 87, 77-86.	1.7	12
233	Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron, 1993, 10, 317-326.	8.1	226
234	GAP-43 as a plasticity protein in neuronal form and repair. Journal of Neurobiology, 1992, 23, 507-520.	3.6	172

#	Article	IF	CITATIONS
235	The neuronal growth cone as a specialized transduction system. BioEssays, 1991, 13, 127-134.	2.5	69
236	GO is a major growth cone protein subject to regulation by GAP-43. Nature, 1990, 344, 836-841.	27.8	432
237	A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43. Nature, 1989, 341, 345-348.	27.8	178
238	Enkephalin convertase: characterization and localization using [3H]guanidinoethylmercaptosuccinic acid. Biochimie, 1988, 70, 57-64.	2.6	3
239	Characterization of a neutral, divalent cation-sensitive endopeptidase: a possible role in neuropeptide processing. Molecular Brain Research, 1988, 3, 173-181.	2.3	11
240	Enkephalin Convertase in the Gastrointestinal Tract and Associated Organs Characterized and Localized with [3H]Guanidinoethylmercaptosuccinic Acid*. Endocrinology, 1987, 121, 116-126.	2.8	25
241	Differential ontogeny of rat brain peptidases: Prenatal expression of enkephalin convertase and postnatal development of angiotensin-converting enzyme. Developmental Brain Research, 1986, 29, 207-215.	1.7	31
242	Angiotensin-Converting Enzyme Localized in the Rat Pituitary and Adrenal Glands by [³ H]Captopril Autoradiography*. Endocrinology, 1986, 118, 1690-1699.	2.8	40
243	Enkephalin Convertase Demonstrated in the Pituitary and Adrenal Gland by3HGuanidinoethylmercaptosuccinic Acid Autoradiography: Dehydration Decreases Neurohypophyseal Levels*. Endocrinology, 1985, 117, 1667-1674.	2.8	29
244	Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2173-2177.	7.1	1,138
245	Angiotensin-Converting Enzyme in the Testis and Epididymis: Differential Development and Pituitary Regulation of Isozymes*. Endocrinology, 1985, 117, 1374-1379.	2.8	38
246	Substance K and substance P as possible endogenous substrates of angiotensin converting enzyme in the brain. Biochemical and Biophysical Research Communications, 1985, 128, 317-324.	2.1	64
247	Angiotensin-Converting Enzyme in the Male Rat Reproductive System: Autoradiographic Visualization with [3H]Captopril*. Endocrinology, 1984, 115, 2332-2341.	2.8	77
248	Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature, 1984, 310, 792-794.	27.8	261
249	A fluorometric assay for angiotensin-converting enzyme activity. Analytical Biochemistry, 1984, 140, 293-302.	2.4	19
250	[3H]Captopril binding to membrane associated angiotensin converting enzyme. Biochemical and Biophysical Research Communications, 1983, 112, 1027-1033.	2.1	43