
Milo Charles Wiltbank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new presynchronization system (Double-Ovsynch) increases fertility at first postpartum timed AI in lactating dairy cows. Theriogenology, 2008, 70, 208-215.	0.9	512
2	Reproductive Management of Lactating Dairy Cows Using Synchronization of Ovulation. Journal of Dairy Science, 1997, 80, 301-306.	1.4	349
3	Effect of increasing GnRH and PGF21± dose during Double-Ovsynch on ovulatory response, luteal regression, and fertility of lactating dairy cows. Theriogenology, 2013, 80, 773-783.	0.9	346
4	Changes in reproductive physiology of lactating dairy cows due to elevated steroid metabolism. Theriogenology, 2006, 65, 17-29.	0.9	333
5	Follicular Deviation and Acquisition of Ovulatory Capacity in Bovine Follicles1. Biology of Reproduction, 2001, 65, 1403-1409.	1.2	305
6	Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology, 2016, 86, 239-253.	0.9	291
7	Effect of Time of Artificial Insemination on Pregnancy Rates, Calving Rates, Pregnancy Loss, and Gender Ratio After Synchronization of Ovulation in Lactating Dairy Cows. Journal of Dairy Science, 1998, 81, 2139-2144.	1.4	232
8	Prostaglandin F2α Regulates Distinct Physiological Changes in Early and Mid-Cycle Bovine Corpora Lutea1. Biology of Reproduction, 1998, 58, 346-352.	1.2	166
9	The cow as an induced ovulator: Timed Al after synchronization of ovulation. Theriogenology, 2014, 81, 170-185.	0.9	166
10	Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. Journal of Dairy Science, 2014, 97, 3666-3683.	1.4	119
11	Quantification of mRNA Using Competitive RTPCR with Standard-Curve Methodology. BioTechniques, 1996, 21, 862-866.	0.8	112
12	Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reproduction, Fertility and Development, 2010, 22, 151.	0.1	112
13	Prostaglandin F2α Induces Expression of Prostaglandin G/H Synthase-2 in the Ovine Corpus Luteum: A Potential Positive Feedback Loop during Luteolysis1. Biology of Reproduction, 1997, 57, 1016-1022.	1.2	108
14	Distinct Regulation by Steroids of Messenger RNAs for FSHR and CYP19A1 in Bovine Granulosa Cells. Biology of Reproduction, 2006, 75, 217-225.	1.2	107
15	Improving fertility to timed artificial insemination by manipulation of circulating progesterone concentrations in lactating dairy cattle. Reproduction, Fertility and Development, 2012, 24, 238.	0.1	107
16	RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics, 2012, 13, 118.	1.2	97
17	Effect of a second treatment with prostaglandin F2α during the Ovsynch protocol on luteolysis and pregnancy in dairy cows. Journal of Dairy Science, 2015, 98, 8644-8654.	1.4	92
18	Managing the dominant follicle in lactating dairy cows. Theriogenology, 2011, 76, 1568-1582.	0.9	90

MILO CHARLES WILTBANK

#	Article	IF	CITATIONS
19	Regulation of the Corpus Luteum by Protein Kinase C. II. Inhibition of Lipoprotein-Stimulated Steroidogenesis by Prostaglandin F21±1. Biology of Reproduction, 1989, 42, 239-245.	1.2	89
20	Role of Follicular Estradiol-17beta in Timing of Luteolysis in Heifers1. Biology of Reproduction, 2009, 81, 426-437.	1.2	87
21	Patterns of Gene Expression in the Bovine Corpus Luteum Following Repeated Intrauterine Infusions of Low Doses of Prostaglandin F2alpha1. Biology of Reproduction, 2012, 86, 130.	1.2	85
22	Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos. PLoS ONE, 2013, 8, e72302.	1.1	83
23	Regulation of intraluteal production of prostaglandins. Reproductive Biology and Endocrinology, 2003, 1, 91.	1.4	79
24	Reproductive Hormones and Follicular Growth During Development of One or Multiple Dominant Follicles in Cattle1. Biology of Reproduction, 2005, 72, 788-795.	1.2	79
25	Relationship between circulating anti-Müllerian hormone (AMH) and superovulatory response of high-producing dairy cows. Journal of Dairy Science, 2015, 98, 169-178.	1.4	78
26	The Role of Luteinizing Hormone in Regulating Gene Expression During Selection of a Dominant Follicle in Cattle. Biology of Reproduction, 2011, 84, 369-378.	1.2	77
27	Cell types and hormonal mechanisms associated with mid-cycle corpus luteum function. Journal of Animal Science, 1994, 72, 1873-1883.	0.2	75
28	An Alteration in the Hypothalamic Action of Estradiol Due to Lack of Progesterone Exposure Can Cause Follicular Cysts in Cattle1. Biology of Reproduction, 2002, 66, 1689-1695.	1.2	66
29	Hormonal Regulation of Monocyte Chemoattractant Protein-1 Messenger Ribonucleic Acid Expression in Corpora Lutea. Endocrinology, 1997, 138, 4517-4520.	1.4	62
30	Prostaglandin F2α Receptor in the Corpus Luteum: Recent Information on the Gene, Messenger Ribonucleic Acid, and Protein1. Biology of Reproduction, 2001, 64, 1041-1047.	1.2	53
31	Development and Use of an Ovarian Synchronization Model to Study the Effects of Endogenous Estrogen and Nitric Oxide on Uterine Blood Flow During Ovarian Cycles in Sheep1. Biology of Reproduction, 2004, 70, 1886-1894.	1.2	50
32	Endothelial Vasodilator Production by Uterine and Systemic Arteries. VIII. Estrogen and Progesterone Effects on cPLA2, COX-1, and PGIS Protein Expression1. Biology of Reproduction, 2002, 66, 468-474.	1.2	48
33	Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows. PLoS ONE, 2017, 12, e0189117.	1.1	46
34	Length of progesterone exposure needed to resolve large follicle anovular condition in dairy cows. Theriogenology, 2005, 63, 202-218.	0.9	45
35	Lack of complete regression of the Day 5 corpus luteum after one or two doses of PGF2α in nonlactating Holstein cows. Theriogenology, 2014, 81, 389-395.	0.9	41
36	Gonadotropin-Releasing Hormone, Estradiol, and Inhibin Regulation of Follicle-Stimulating Hormone and Luteinizing Hormone Surges: Implications for Follicle Emergence and Selection in Heifers. Biology of Reproduction, 2013, 88, 165-165.	1.2	40

MILO CHARLES WILTBANK

#	Article	IF	CITATIONS
37	Relationship between Follicular Development and the Decline in the Follicle-Stimulating Hormone Surge in Heifers. Biology of Reproduction, 1999, 60, 72-77.	1.2	39
38	Effect of uterine size on fertility of lactating dairy cows. Theriogenology, 2016, 85, 1357-1366.	0.9	39
39	Regulation of Blood Flow to the Rabbit Corpus Luteum: Effects of Estradiol and Human Chorionic Gonadotropin*. Endocrinology, 1989, 124, 605-611.	1.4	37
40	Progesterone supplementation after ovulation: Effects on corpus luteum function and on fertility of dairy cows subjected to Al or ET. Theriogenology, 2015, 84, 1215-1224.	0.9	36
41	Transcriptional Regulation of the Cyclooxygenase-2 Gene Changes from Protein Kinase (PK) A- to PKC-Dependence after Luteinization of Granulosa Cells1. Biology of Reproduction, 2002, 66, 1505-1514.	1.2	35
42	Management of Dry and Transition Cows to Improve Energy Balance and Reproduction. Journal of Reproduction and Development, 2010, 56, S22-S28.	0.5	35
43	Acquisition of Luteolytic Capacity: Changes in Prostaglandin F2α Regulation of Steroid Hormone Receptors and Estradiol Biosynthesis in Pig Corpora Lutea1. Biology of Reproduction, 2004, 70, 1333-1339.	1.2	33
44	Acquisition of luteolytic capacity involves differential regulation by prostaglandin F2α of genes involved in progesterone biosynthesis in the porcine corpus luteum. Domestic Animal Endocrinology, 2005, 28, 172-189.	0.8	30
45	Effect of feed restriction on reproductive and metabolic hormones in dairy cows. Journal of Dairy Science, 2014, 97, 754-763.	1.4	30
46	Factors That Optimize Reproductive Efficiency in Dairy Herds with an Emphasis on Timed Artificial Insemination Programs. Animals, 2021, 11, 301.	1.0	28
47	Effect of Glucocorticoid-Induced Insulin Resistance on Follicle Development and Ovulation. Biology of Reproduction, 2013, 88, 153-153.	1.2	27
48	Follicular cysts occur after a normal estradiol-induced GnRH/LH surge if the corpus hemorrhagicum is removed. Reproduction, 2005, 129, 737-745.	1.1	26
49	Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2αâ€. Biology of Reproduction, 2018, 98, 465-479.	1.2	26
50	Profiles of prostaglandin F2α metabolite in dairy cattle during luteal regression and pregnancy: implications for corpus luteum maintenanceâ€. Biology of Reproduction, 2019, 101, 76-90.	1.2	24
51	Regulation of cytochrome P450scc synthesis and activity in the ovine corpus luteum. Journal of Steroid Biochemistry and Molecular Biology, 1994, 51, 283-290.	1.2	22
52	Progesterone-based timed AI protocols for Bos indicus cattle II: Reproductive outcomes of either EB or GnRH-type protocol, using or not GnRH at AI. Theriogenology, 2020, 145, 86-93.	0.9	22
53	Physiological mechanisms involved in maintaining the corpus luteum during the first two months of pregnancy. Animal Reproduction, 2018, 15, 805-821.	0.4	22
54	Proposal of a new model for CL regression or maintenance during pregnancy on the basis of timing of regression of contralateral, accessory CL in pregnant cows. Theriogenology, 2017, 89, 214-225.	0.9	21

#	Article	IF	CITATIONS
55	Postovulatory treatment with GnRH on day 5 reduces pregnancy loss in recipients receiving an inÂvitro produced expanded blastocyst. Theriogenology, 2020, 141, 202-210.	0.9	21
56	Symposium review: The implications of spontaneous versus synchronized ovulations on the reproductive performance of lactating dairy cows. Journal of Dairy Science, 2022, 105, 4679-4689.	1.4	21
57	Transcriptional Regulation of Cyclooxygenase-2 Gene in Ovine Large Luteal Cells1. Biology of Reproduction, 2001, 65, 1565-1572.	1.2	20
58	Induction of mRNA for Chemokines and Chemokine Receptors by Prostaglandin F2α Is Dependent upon Stage of the Porcine Corpus Luteum and Intraluteal Progesterone. Endocrinology, 2011, 152, 2797-2805.	1.4	20
59	Proteins Secreted from the Early Ovine Conceptus Block the Action of Prostaglandin F2α on Large Luteal Cells1. Biology of Reproduction, 1992, 46, 475-482.	1.2	19
60	Effects of deep-horn AI on fertilization and embryo production in superovulated cows and heifers. Theriogenology, 2013, 80, 1074-1081.	0.9	18
61	Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: Lactation performance and plasma amino acid concentrations. Journal of Dairy Science, 2021, 104, 7583-7603.	1.4	18
62	Effect of Decreasing Intraluteal Progesterone on Sensitivity of the Early Porcine Corpus Luteum to the Luteolytic Actions of Prostaglandin F2alpha1. Biology of Reproduction, 2011, 84, 26-33.	1.2	17
63	Short communication: Follicle superstimulation before ovum pick-up for in vitro embryo production in Holstein cows. Journal of Dairy Science, 2016, 99, 9307-9312.	1.4	17
64	Trio, a novel high fecundity allele: I. Transcriptome analysis of granulosa cells from carriers and noncarriers of a major gene for bovine ovulation rateâ€. Biology of Reproduction, 2018, 98, 323-334.	1.2	17
65	Up-regulation of endometrial oxytocin receptor is associated with the timing of luteolysis in heifers with two and three follicular wavesâ€. Biology of Reproduction, 2020, 102, 316-326.	1.2	17
66	Progesterone-based timed Al protocols for Bos indicus cattle I: Evaluation of ovarian function. Theriogenology, 2020, 145, 126-137.	0.9	17
67	Mechanisms regulating follicle selection in ruminants: lessons learned from multiple ovulation models. Animal Reproduction, 2018, 15, 660-679.	0.4	15
68	Effects of acute feed restriction combined with targeted use of increasing luteinizing hormone content of follicle-stimulating hormone preparations on ovarian superstimulation, fertilization, and embryo quality in lactating dairy cows. Journal of Dairy Science, 2014, 97, 764-778.	1.4	14
69	Hormonal mechanisms regulating follicular wave dynamics I: Comparison of follicle growth profiles under different physiological conditions in heifers. Theriogenology, 2019, 123, 194-201.	0.9	13
70	Accessory corpus luteum induced by human chorionic gonadotropin on day 7 or days 7 and 13 of the estrous cycle affected follicular and luteal dynamics and luteolysis in lactating Holstein cows. Journal of Dairy Science, 2022, 105, 2631-2650.	1.4	13
71	Follicular waves and hormonal profiles during the estrous cycle of carriers and non-carriers of the Trio allele, a major bovine gene for high ovulation and fecundity. Theriogenology, 2017, 100, 100-113.	0.9	12
72	Interferon-Tau Exerts Direct Prosurvival and Antiapoptotic Actions in Luteinized Bovine Granulosa Cells. Scientific Reports, 2019, 9, 14682.	1.6	12

#	Article	IF	CITATIONS
73	Hormonal combinations aiming to improve reproductive outcomes of Bos indicus cows submitted to estradiol/progesterone-based timed Al protocols. Theriogenology, 2021, 169, 89-99.	0.9	12
74	Progesterone-based timed AI protocols for Bos indicus cattle III: Comparison of protocol lengths. Theriogenology, 2020, 152, 29-35.	0.9	11
75	Effect of Progesterone Concentration During Follicle Development on Subsequent Ovulation, Fertilization, and Early Embryo Development in Lactating Dairy Cows Biology of Reproduction, 2011, 85, 685-685.	1.2	11
76	Evolution of fixed-time AI in dairy cattle in Brazil. Animal Reproduction, 2018, 15, 940-951.	0.4	11
77	Effects of dry matter and energy intake on quality of oocytes and embryos in ruminants. Reproduction, Fertility and Development, 2017, 29, 58.	0.1	10
78	Trio a novel bovine high-fecundity allele: II. Hormonal profile and follicular dynamics underlying the high ovulation rateâ€. Biology of Reproduction, 2018, 98, 335-349.	1.2	10
79	Prevalence and risk factors related to anovular phenotypes in dairy cows. Journal of Dairy Science, 2021, 104, 2369-2383.	1.4	10
80	Differential regulation of prostaglandin endoperoxide synthase-2 transcription in ovine granulosa and large luteal cells. Prostaglandins and Other Lipid Mediators, 2001, 65, 103-116.	1.0	9
81	Identification of stable genes in the corpus luteum of lactating Holstein cows in pregnancy and luteolysis: Implications for selection of reverse-transcription quantitative PCR reference genes. Journal of Dairy Science, 2020, 103, 4846-4857.	1.4	9
82	Actions of Prostaglandin F2α and Prolactin on Intercellular Adhesion Molecule-1 Expression and Monocyte/Macrophage Accumulation in the Rat Corpus Luteum1. Biology of Reproduction, 2001, 64, 890-897.	1.2	8
83	Trio, a novel bovine high fecundity allele: III. Acquisition of dominance and ovulatory capacity at a smaller follicle sizeâ€. Biology of Reproduction, 2018, 98, 350-365.	1.2	8
84	Effect of natural pre-luteolytic prostaglandin F2α pulses on the bovine luteal transcriptome during spontaneous luteal regressionâ€. Biology of Reproduction, 2021, 105, 1016-1029.	1.2	8
85	Induction of chemokines and prostaglandin synthesis pathways in luteinized human granulosa cells: potential role of luteotropin withdrawal and prostaglandin F2I± in regression of the human corpus luteum. Reproductive Biology, 2015, 15, 247-256.	0.9	7
86	Endometrial and luteal responses to a prostaglandin F2alpha pulse: a comparison between heifers and mares. Biology of Reproduction, 2022, 106, 979-991.	1.2	7
87	In vivo embryo production in cows superovulated 1 or 2 days after ovum pick-up. Reproduction, Fertility and Development, 2014, 26, 527.	0.1	6
88	Embryo production in heifers with low or high dry matter intake submitted to superovulation. Theriogenology, 2017, 92, 30-35.	0.9	6
89	Ovulation rate, antral follicle count, and circulating anti-Müllerian hormone in Trio allele carriers, a novel high fecundity bovine genotype. Theriogenology, 2017, 101, 81-90.	0.9	6
90	Proteomic analysis of follicular fluid in carriers and non-carriers of the Trio allele for high ovulation rate in cattle. Reproduction, Fertility and Development, 2018, 30, 1643.	0.1	6

#	Article	IF	CITATIONS
91	Pregnancy-induced changes in the transcriptome of the bovine corpus luteum during and after embryonic interferon-tau secretionâ€. Biology of Reproduction, 2021, 105, 148-163.	1.2	6
92	Determination of Transfection Efficiency by Direct Polymerase Chain Reaction. Analytical Biochemistry, 1999, 271, 108-111.	1.1	5
93	Equine chorionic gonadotropin increases fertility of grazing dairy cows that receive fixed-time artificial insemination in the early but not later postpartum period. Theriogenology, 2017, 98, 36-40.	0.9	5
94	Development of a novel 21-day reinsemination program, ReBreed21, in Bos indicus heifers. Theriogenology, 2020, 155, 125-131.	0.9	5
95	Insights from two independent transcriptomic studies of the bovine corpus luteum during pregnancy. Journal of Animal Science, 2022, 100, .	0.2	5
96	History, insights, and future perspectives on studies into luteal function in cattle. Journal of Animal Science, 2022, 100, .	0.2	5
97	Estradiol and Progesterone Exhibit Similar Patterns of Hepatic Gene Expression Regulation in the Bovine Model. PLoS ONE, 2013, 8, e73552.	1.1	4
98	Oxytocin-induced prostaglandin F2-alpha release is low in early bovine pregnancy but increases during the second month of pregnancyâ€. Biology of Reproduction, 2019, 102, 412-423.	1.2	4
99	Selection of fewer dominant follicles in Trio carriers given GnRH antagonist and luteinizing hormone action replaced by nonpulsatile human chorionic gonadotropinâ€. Biology of Reproduction, 2020, 103, 1217-1228.	1.2	4
100	Effects of feeding rumen-protected methionine pre- and postpartum on reproductive outcomes of multiparous Holstein cows. Journal of Dairy Science, 2021, 104, 11210-11225.	1.4	4
101	Effects of propylene glycol or elevated luteinizing hormone during follicle development on ovulation, fertilization, and early embryo developmentâ€. Biology of Reproduction, 2017, 97, 550-563.	1.2	4
102	Toll-like receptor 2 and 4 expression in the bovine corpus luteum during the different stages of the estrous cycle. Animal Reproduction, 2017, 14, 1270-1277.	0.4	4
103	Expression patterns of chemokine (C–C motif) ligand 2, prostaglandin F2A receptor and immediate early genes at mRNA level in the bovine corpus luteum after intrauterine treatment with a low dose of prostaglandin F2A. Theriogenology, 2022, 189, 70-76.	0.9	4
104	Effect of elevating luteinizing hormone action using low doses of human chorionic gonadotropin on double ovulation, follicle dynamics, and circulating follicle-stimulating hormone in lactating dairy cows. Journal of Dairy Science, 2022, 105, 7023-7035.	1.4	3
105	Optimizing timed AI protocols for Angus beef heifers: Comparison of induction of synchronized ovulation with estradiol cypionate or GnRH. Theriogenology, 2018, 121, 7-12.	0.9	2
106	Effect of route of administration of dinoprost tromethamine on plasma profiles of 13,14-dihydro-15-keto-prostaglandin F21± and progesterone in lactating Holstein cows. JDS Communications, 2021, 2, 421-425.	0.5	1
107	Effect of Organic Zinc, Manganese, Copper, and Cobalt on Follicular Growth, Embryo Quality, and Tissue Mineral Concentrations in Lactating Dairy Cows Biology of Reproduction, 2009, 81, 490-490.	1.2	1
108	Practical application of an impractical bovine genotype: creating bilateral twin pregnancies in Trio allele carriers, Journal of Animal Science, 2020, 98, .	0.2	0

#	Article	IF	CITATIONS
109	DO ESTRADIOL AND PROGESTERONE REGULATE THEIR OWN METABOLISM?. Biology of Reproduction, 2007, 77, 214-214.	1.2	0
110	Stage-Specific Responses in Gene Expression and Signaling Pathway Activation after Treatment with Prostaglandin F2 Alpha (PGF) and Interferon-Gamma (IFNG) in Bovine Corpus Luteum (CL) and Luteinizing Granulosa Cells Biology of Reproduction, 2009, 81, 53-53.	1.2	0
111	Comparison among Different Doses of Prostaglandin F2alpha (PGF) on Luteal Function of the Day 5 Corpus Luteum (CL) in Nonlactating Holstein Cows Biology of Reproduction, 2010, 83, 225-225.	1.2	0
112	Effect of Glucocorticoid Treatment to Induce Insulin Resistance on Follicle Development and Ovulation Biology of Reproduction, 2010, 83, 600-600.	1.2	0
113	Male Embryos Produced in vitro Deviate From Their in vivo Counterparts in Placental Gene Expression on Day 32 of Pregnancy. Frontiers in Animal Science, 2022, 3, .	0.8	0
114	Managing the dominant follicle in high-producing dairy cows. , 2010, 67, 231-246.		0