Matej Krpan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527094/publications.pdf

Version: 2024-02-01

1163117 1199594 17 253 8 12 citations h-index g-index papers 17 17 17 174 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Vibro-Acoustic Methods in the Condition Assessment of Power Transformers: A Survey. IEEE Access, 2019, 7, 83915-83931.	4.2	49
2	Introducing lowâ€order system frequency response modelling of a future power system with high penetration of wind power plants with frequency support capabilities. IET Renewable Power Generation, 2018, 12, 1453-1461.	3.1	43
3	Dynamic characteristics of virtual inertial response provision by DFIG-based wind turbines. Electric Power Systems Research, 2020, 178, 106005.	3.6	30
4	Impact of wind capacity share, allocation of inertia and grid configuration on transient RoCoF: The case of the Croatian power system. International Journal of Electrical Power and Energy Systems, 2020, 121, 106075.	5.5	24
5	Challenges of High Renewable Energy Sources Integration in Power Systemsâ€"The Case of Croatia. Energies, 2021, 14, 1047.	3.1	17
6	Modeling and Initialization of a Virtual Synchronous Machine for Power System Fundamental Frequency Simulations. IEEE Access, 2021, 9, 160116-160134.	4.2	17
7	Modelling of Supercapacitor Banks for Power System Dynamics Studies. IEEE Transactions on Power Systems, 2021, 36, 3987-3996.	6.5	15
8	Inertial and primary frequency response model of variableâ€speed wind turbines. Journal of Engineering, 2017, 2017, 844-848.	1.1	13
9	Towards the New Low-Order System Frequency Response Model of Power Systems with High Penetration of Variable-Speed Wind Turbine Generators. , 2018, , .		8
10	Analysis and treatment of power oscillations in hydropower plant Dubrava. IET Renewable Power Generation, 2020, 14, 80-89.	3.1	8
11	Improved dynamic model of a bulb turbine-generator for analysing oscillations caused by mechanical torque disturbance on a runner blade. International Journal of Electrical Power and Energy Systems, 2020, 119, 105929.	5.5	6
12	A Model Predictive Control Approach to Operation Optimization of an Ultracapacitor Bank for Frequency Control. IEEE Transactions on Energy Conversion, 2021, 36, 1743-1755.	5.2	6
13	Linearized model of variable speed wind turbines for studying power system frequency changes. , 2017, , .		5
14	Multi-energy Microgrid Ability to Provide Flexibility Services to the System Operator and Security of Supply to End-users. , 2020, , .		4
15	Using Deep Neural Networks for On-Load Tap Changer Audio-Based Diagnostics. IEEE Transactions on Power Delivery, 2022, 37, 3038-3050.	4.3	4
16	Coordinated Control of an Ultracapacitor Bank and a Variable-Speed Wind Turbine Generator for Inertial Response Provision During Low and Above Rated Wind Speeds. , 2019, , .		3
17	Impact of Ultracapacitor Modelling on Fast Frequency Control Performance., 2020,,.		1