Kenji Kikuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527054/publications.pdf

Version: 2024-02-01

257450 265206 2,112 121 24 42 h-index citations g-index papers 125 125 125 1765 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Phase Equilibria and Microstructure on & Samp; gamma; & Samp; prime; Phase in Co-Ni-Al-W System. Materials Transactions, 2008, 49, 1474-1479.	1.2	254
2	Abnormal Grain Growth Induced by Cyclic Heat Treatment. Science, 2013, 341, 1500-1502.	12.6	216
3	Ultra-large single crystals by abnormal grain growth. Nature Communications, 2017, 8, 354.	12.8	135
4	Giant elastocaloric effect covering wide temperature range in columnar-grained Cu _{71.5} Al _{17.5} Mn ₁₁ shape memory alloy. APL Materials, 2016, 4, 106106.	5.1	79
5	Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science, 2020, 369, 855-858.	12.6	77
6	Experimental and Thermodynamic Studies of the Fe–Si Binary System. ISIJ International, 2012, 52, 540-548.	1.4	75
7	Machine learning assisted design of $\hat{I}^3\hat{e}^2$ -strengthened Co-base superalloys with multi-performance optimization. Npj Computational Materials, 2020, 6, .	8.7	56
8	Cooling-induced shape memory effect and inverse temperature dependence of superelastic stress in Co2Cr(Ga,Si) ferromagnetic Heusler alloys. Applied Physics Letters, 2013, 103, .	3.3	45
9	Reorientation of a Nonspherical Capsule in Creeping Shear Flow. Physical Review Letters, 2012, 108, 138102.	7.8	43
10	Cryogenic superelasticity with large elastocaloric effect. NPG Asia Materials, 2018, 10, e457-e457.	7.9	42
11	Phase Equilibria and Phase Transition of the Ni–Fe–Ga Ferromagnetic Shape Memory Alloy System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 767-776.	2.2	40
12	Influence of Co Addition on Martensitic and Magnetic Transitions in Ni-Fe-Ga β Based Shape Memory Alloys. Materials Transactions, 2005, 46, 734-737.	1.2	38
13	Feasibility of tension braces using Cu-Al-Mn superelastic alloy bars. Structural Control and Health Monitoring, 2014, 21, 1304-1315.	4.0	38
14	Swimming mediated by ciliary beating: comparison with a squirmer model. Journal of Fluid Mechanics, 2019, 874, 774-796.	3.4	36
15	Martensitic Transformation and Superelasticity in Fe–Mn–Al-Based Shape Memory Alloys. Shape Memory and Superelasticity, 2017, 3, 322-334.	2.2	35
16	Numerical methods for simulating blood flow at macro, micro, and multi scales. Journal of Biomechanics, 2016, 49, 2221-2228.	2.1	33
17	Cell adhesion during bullet motion in capillaries. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H395-H403.	3.2	32
18	Upward swimming of a sperm cell in shear flow. Physical Review E, 2016, 93, 032402.	2.1	30

#	Article	IF	Citations
19	Two-Way Shape Memory Effect Induced by Bending Deformation in Ductile Cu-Al-Mn Alloys. Materials Transactions, 2002, 43, 1676-1683.	1.2	29
20	Damping Properties of Ductile Cu-Al-Mn-Based Shape Memory Alloys. Materials Transactions, 2005, 46, 118-122.	1.2	29
21	Superplasticity of Cu-Al-Mn-Ni Shape Memory Alloy. Materials Transactions, 2007, 48, 2914-2918.	1.2	29
22	Hemodynamics in the Microcirculation and in Microfluidics. Annals of Biomedical Engineering, 2015, 43, 238-257.	2.5	29
23	Martensitic Transformation and Magnetic Properties of Cu-Ga-Mn β Alloys. Materials Transactions, 2004, 45, 2780-2784.	1.2	28
24	Phase Equilibria and Ternary Intermetallic Compound with L12 Structure in Co-W-Ga System. Journal of Phase Equilibria and Diffusion, 2009, 30, 587-594.	1.4	25
25	A jumping shape memory alloy under heat. Scientific Reports, 2016, 6, 21754.	3.3	23
26	Martensitic Transformations and Superelastic Behavior at Low Temperatures in Ti _{50−} <i></i> Ni _{40+<td>t;&lt;i>&</td><td>klt;20b>x&</td>}	t;&l t;i >&	klt; 2 0b>x&
27	Elastocaloric switching effect induced by reentrant martensitic transformation. Applied Physics Reviews, 2020, 7, .	11.3	22
28	Micro-PIV (micro particle image velocimetry) visualization of red blood cells (RBCs) sucked by a female mosquito. Measurement Science and Technology, 2011, 22, 064002.	2.6	21
29	Superelasticity at Low Temperatures in Cu-17Al-15Mn (at%) Shape Memory Alloy. Materials Transactions, 2011, 52, 1713-1715.	1.2	20
30	Shape Memory Effect Associated with FCC— HCP Martensitic Transformation in Co-Al Alloys. Materials Transactions, 2003, 44, 2732-2735.	1.2	19
31	Elasto-hydrodynamic interaction of two swimming spermatozoa. Physics of Fluids, 2020, 32, .	4.0	19
32	Cilia and centrosomes: Ultrastructural and mechanical perspectives. Seminars in Cell and Developmental Biology, 2021, 110, 61-69.	5.0	18
33	Burst mode pumping: A new mechanism of drinking in mosquitoes. Scientific Reports, 2018, 8, 4885.	3.3	17
34	Membrane tension of red blood cells pairwisely interacting in simple shear flow. Journal of Biomechanics, 2013, 46, 548-553.	2.1	16
35	Numerical analysis of a red blood cell flowing through a thin micropore. Physical Review E, 2014, 89, 013008.	2.1	16
36	Effect of chain transfer agents on the kinetics and mechanism of particle nucleation in the emulsion polymerization of vinyl pivalate. Colloid and Polymer Science, 2007, 285, 523-534.	2.1	15

#	Article	IF	CITATIONS
37	Dynamic Recovery and Superelasticity of Columnar-Grained Cu–Al–Mn Shape Memory Alloy. Metals, 2017, 7, 141.	2.3	15
38	Effect of Thermomechanical Processing on Texture and Superelasticity in Fe–Ni-Co-Al–Ti-B Alloy. Shape Memory and Superelasticity, 2018, 4, 102-111.	2.2	15
39	Vulnerability of the skin barrier to mechanical rubbing. International Journal of Pharmaceutics, 2020, 587, 119708.	5.2	15
40	A full GPU implementation of a numerical method for simulating capsule suspensions. Journal of Biomechanical Science and Engineering, 2014, 9, 14-00039-14-00039.	0.3	14
41	Effect of Fluid Viscosity on the Cilia-Generated Flow on a Mouse Tracheal Lumen. Annals of Biomedical Engineering, 2017, 45, 1048-1057.	2.5	14
42	Study on the initial stage of emulsion polymerization of vinyl acetate using poly(vinyl alcohol) as a protective colloid. Colloid and Polymer Science, 2003, 281, 337-342.	2.1	13
43	Orientation Dependence of Plasticity and Fracture in Single-Crystal Superelastic Cu-Al-Mn SMA Bars. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	13
44	Orientation Dependence of Superelasticity and Stress Hysteresis in Cu–Al–Mn Alloy. Materials Transactions, 2020, 61, 55-60.	1.2	13
45	Rheotaxis and migration of an unsteady microswimmer. Journal of Fluid Mechanics, 2022, 930, .	3.4	13
46	Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe–Mn–Al–Ni Shape Memory Alloys. Shape Memory and Superelasticity, 2017, 3, 467-475.	2.2	12
47	Simulation of the nodal flow of mutant embryos with a small number of cilia: comparison of mechanosensing and vesicle transport hypotheses. Royal Society Open Science, 2018, 5, 180601.	2.4	12
48	Swimming of Spermatozoa in a Maxwell Fluid. Micromachines, 2019, 10, 78.	2.9	12
49	Flexible and Tough Superelastic Co–Cr Alloys for Biomedical Applications. Advanced Materials, 2022, 34, e2202305.	21.0	11
50	Two- and Three-Dimensional Grain Growth in the Cu–Al–Mn Shape Memory Alloy. Materials Transactions, 2013, 54, 2044-2048.	1.2	10
51	Hydrodynamic interaction between two red blood cells in simple shear flow: its impact on the rheology of a semi-dilute suspension. Computational Mechanics, 2014, 54, 933-941.	4.0	10
52	Nutrient uptake in a suspension of squirmers. Journal of Fluid Mechanics, 2016, 789, 481-499.	3.4	10
53	Bacterial biomechanics—From individual behaviors to biofilm and the gut flora. APL Bioengineering, 2020, 4, 041504.	6.2	10

Effect of additives on the initial stage of emulsion polymerization of styrene (St) using poly(vinyl) Tj ETQq0 0 0 rgBT loverlock 10 Tf 50 graph 10 Tf 50 graph 2.1

#	Article	IF	CITATIONS
55	<i>In situ</i> heating SEM observation of the bainitic transformation process in Cu–17Al–11Mn (at.%) alloys. Microscopy (Oxford, England), 2016, 65, 159-168.	1.5	9
56	Biomechanics of <i>Tetrahymena</i> escaping from a dead end. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172368.	2.6	9
57	The shape-effect of flagella is more important than bottom-heaviness on passive gravitactic orientation in <i>Chlamydomonas reinhardtii</i> . Journal of Experimental Biology, 2020, 223, .	1.7	9
58	Inhomogeneous distribution of <i>Chlamydomonas</i> in a cylindrical container with a bubble plume. Biology Open, 2016, 5, 154-160.	1.2	8
59	Passive swimming of a microcapsule in vertical fluid oscillation. Physical Review E, 2018, 98, 023108.	2.1	8
60	Influence of additives on model emulsion polymerization of vinyl acetate (VAc) using poly(vinyl) Tj ETQq0 0 0 rgBT	Overlock 2.1	₹ 1 0 Tf 50 5
61	Microstructure and Mechanical Properties in B-Doped Fe-31.9Ni-9.6Co-4.7Ti Alloys. Shape Memory and Superelasticity, 2016, 2, 228-234.	2.2	7
62	Deformation of a micro-torque swimmer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150604.	2.1	6
63	Cyclic Properties of Superelasticity in Cu–Al–Mn Single-Crystalline Sheets with Bainite Precipitates. Shape Memory and Superelasticity, 2018, 4, 428-434.	2.2	6
64	Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS) in Nitella Internodal Cells. PLoS ONE, 2015, 10, e0144938.	2.5	6
65	A numerical model of a red blood cell infected by <i>Plasmodium falciparum</i> malaria: coupling cell mechanics with ligand-receptor interactions. Science and Technology of Advanced Materials, 2016, 17, 454-461.	6.1	5
66	Morphological and chemical analysis of bainite in Cu–17Al–11Mn (at.%) alloys by using orthogonal FIB-SEM and double-EDS STEM. Microscopy (Oxford, England), 2016, 65, 243-252.	1.5	5
67	Biaxial fluid oscillations can propel a microcapsule swimmer in an arbitrary direction. Physical Review E, 2018, 98, .	2.1	5
68	Mechanical roles of anterograde and retrograde intestinal peristalses after feeding in a larval fish (<i>Danio rerio</i>). American Journal of Physiology - Renal Physiology, 2020, 318, G1013-G1021.	3.4	5
69	Effect of Al Content on Abnormal Grain Growth and Superelasticity in Fe–Mn–Al–Cr–Ni Shape Memory Alloys with Near-Zero Temperature-Dependence of Transformation Stress. Shape Memory and Superelasticity, 2021, 7, 402-413.	2.2	5
70	The bubble-induced population dynamics of fermenting yeasts. Journal of the Royal Society Interface, 2020, 17, 20200735.	3.4	5
71	Texture Formation in a Polycrystalline Fe–Ni–Co–Al–Ti–B Shape Memory Alloy. ISIJ International, 2020, 60, 2973-2982.	1.4	5
72	Thermosensitive poly(methyl methacrylate) emulsion prepared in the presence of poly(vinyl alcohol) with a cloud point as a protective colloid. Colloid and Polymer Science, 2004, 283, 111-116.	2.1	4

#	Article	IF	CITATIONS
73	Polymerization of vinyl acetate in fatty acids and properties of poly (vinyl alcohols) derived from the poly (vinyl acetates). Colloid and Polymer Science, 2005, 283, 799-804.	2.1	4
74	Measurement of distributions of cesium and rubidium in rice grains using micro-PIXE for detailed examinations of contaminated food. International Journal of PIXE, 2014, 24, 17-27.	0.4	4
75	Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position. Measurement Science and Technology, 2015, 26, 025301.	2.6	4
76	Collective spreading of red blood cells flowing in a microchannel. Journal of Biomechanics, 2018, 69, 64-69.	2.1	4
77	Depth measurement of molecular permeation using inclined confocal microscopy. PLoS ONE, 2019, 14, e0214504.	2.5	4
78	Impact of rheological properties on bacterial streamer formation. Journal of the Royal Society Interface, 2021, 18, 20210546.	3.4	4
79	Studies on radioactive cesium and alkali elements in lentinula edodes (Shiitake) based on PIXE analysis. International Journal of PIXE, 2013, 23, 147-152.	0.4	3
80	Accumulation and localization of alkali elements in Lentinula edodes studied by PIXE analysis. International Journal of PIXE, 2014, 24, 197-204.	0.4	3
81	BCC/FCC Martensitic Transformation and Superelasticity in Fe-Based Alloys. Materia Japan, 2015, 54, 398-404.	0.1	3
82	Martensitic Transformation and Metamagnetic Transition in Co-V-(Si, Al) Heusler Alloys. Metals, 2021, 11, 226.	2.3	3
83	Non-biodegradable objects may boost microbial growth in water bodies by harnessing bubbles. Royal Society Open Science, 2021, 8, 210646.	2.4	3
84	Influence of Respiratory Gas Density on Tidal Volume during Mechanical Ventilation: A Laboratory Investigation and Observational Study in Children. Tohoku Journal of Experimental Medicine, 2022, 256, 271-281.	1.2	3
85	Role of electrolytes in the preparation of nanoparticles via the emulsion polymerization of vinyl pivalate. Journal of Colloid and Interface Science, 2009, 338, 480-485.	9.4	2
86	Magnetic Properties and Phase Diagram of Ni50Mn $\$ _{50-x}\$ 50 - x Ga $\$ _{x/2}\$ x / 2 In $\$ _{x/2}\$ x / 2 Magnetic Shape Memory Alloys. Shape Memory and Superelasticity, 2016, 2, 371-379.	2.2	2
87	Elastohydrodynamic phase-lock in two rotating cilia. Journal of Biomechanical Science and Engineering, 2018, 13, 17-00467-17-00467.	0.3	2
88	Harnessing random low Reynolds number flow for net migration. Physical Review E, 2020, 101, 063101.	2.1	2
89	Microbial Brazil nut effect. Soft Matter, 2021, 17, 10428-10436.	2.7	2
90	Melting Point of Pure Cr and Phase Equilibria in the Cr-Si Binary System. Journal of Phase Equilibria and Diffusion, 2022, 43, 229-242.	1.4	2

#	Article	IF	Citations
91	Surface sulfate groups on poly(methyl methacrylate) and poly(vinyl acetate) particles from soap-free emulsion polymerization. E-Polymers, 2005, 5, .	3.0	1
92	Effects of a vascular disrupting agent for cancer treatment on normal tissue evaluated by PIXE analysis using quantum dots. International Journal of PIXE, 2014, 24, 59-65.	0.4	1
93	How do C. elegans worms survive in highly viscous habitats?. Journal of Experimental Biology, 2020, 223, .	1.7	1
94	Cryogenic Superelasticity and Concomitant Elastocaloric Effect. Materia Japan, 2019, 58, 44-46.	0.1	1
95	Phase Stability of the L12 Compound and Microstructural Changes in Co-(W or Mo)-Ta Ternary Alloys. Materials Research Society Symposia Proceedings, 2008, 1128, 60801.	0.1	0
96	Martensitic Transformation Behaviors with Various Ni Contents in Ti _{50−<i>X</i>} Ni _{40+<i>X</i>} Cu _{10.0} Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 434-440.	0.4	0
97	Response to the Letter to the Editor "Hemodynamics in the Microcirculation" by A. G. Koutsiaris. Annals of Biomedical Engineering, 2016, 44, 1323-1323.	2.5	0
98	Effects of Liquid Indium Particles on Recrystallization and Grain Growth of $\hat{l}\pm Fe$ in Fe-In Alloys. Materials Transactions, 2018, 59, 188-197.	1.2	0
99	Effects of Liquid Indium Particles on Recrystallization and Grain Growth of αFe in Fe-In Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 166-175.	0.4	0
100	BCC-HCP-FCC Multiple Transformations and $\hat{l}\mu$ Loop in the Fe-Cr-Co-Mn System. Journal of Phase Equilibria and Diffusion, 2021, 42, 735-747.	1.4	0
101	2115 Development of superelastic medical guidewires with functionally graded properties. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 167-168.	0.0	0
102	2117 Superelasticity of Co-Ni-Al ferromagnetic shape memory alloys. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 171-172.	0.0	0
103	2116 High-Temperature Shape Memory Effect in Co-Al System. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 169-170.	0.0	0
104	1016 Superplasticity in Cu-Al-Mn-Based Shape Memory Alloy. The Proceedings of the JSME Annual Meeting, 2008, 2008.1, 45-46.	0.0	0
105	2E15 Numerical analysis of a red blood cell flowing through a micro flow channel. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 439-440.	0.0	0
106	PS8-15 Mechanics of nodal cilia in early mouse embryo (PS8: Poster Short Presentation VIII, Poster) Tj ETQq0 0 0 r Technology in Biomechanics, 2015, 2015.8, 366.	gBT /Overl 0.0	ock 10 Tf 50 0
107	2B41 Effect of Rheological Properties on Ciliary motion and Flow in the airway. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 373-374.	0.0	0
108	PS8-14 Visualization of intestinal peristalsis of mosquito midgut by using micro X-ray imaging(PS8:) Tj ETQq0 0 C	o.0	erlock 10 Tf 5 0

Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 365.

#	Article	IF	CITATIONS
109	PS1-10 Swimming behavior of a model ciliate near a fluid-air or a fluid-solid interface(PS1: Poster) Tj ETQq1 1 0.78. Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 231.	4314 rgBT 0.0	/Overlock 0
110	1A16 Numerical Simulation of the Nodal Ciliary Motion Driven by the Dynein Motor Protein. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 13-14.	0.0	0
111	2B35 Effect of aeration on the distribution of Chlamydomonas. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 371-372.	0.0	0
112	PS3-7 DEVELOPMENT OF A NUMERICAL MODEL OF CYTOSKELETON DYNAMICS(PS3: Poster Short) Tj ETQq0 0 0 r Emerging Science and Technology in Biomechanics, 2015, 2015.8, 268.	_	lock 10 Tf 5 0
113	1316 Flow on a ciliary respiratory epithelium. The Proceedings of the Fluids Engineering Conference, 2015, 2015, _1316-11316-2	0.0	O
114	OS2-2 A NUMEIRICAL SIMULATION OF CYTOADHESION AND ROSETTE FORMATION OF RED BLOOD CELLS INFECTED BY MALARIA(OS2: Integrated Nano-Biomechanics). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 74.	0.0	0
115	PS8-13 Effect of mucous viscosity on ciliary beat in the tracheal lumen(PS8: Poster Short Presentation) Tj ETQq1 1 Science and Technology in Biomechanics, 2015, 2015.8, 364.		1 rgBT /Ove O
116	1D35 Rheology of a red blood cell suspension in a simple shear flow. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 165-166.	0.0	0
117	Viscous Effect of Filter Feeding on C. elegans. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2019, 2019.30, 2814.	0.0	O
118	Development of mechanical model for nodal cilia axoneme. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2019, 2019.32, 1G33.	0.0	0
119	Abnormal Grain Growth Induced by Cyclic Heat Treatment and Fabrication of Cu-Based Shape Memory Alloy Single Crystal. Materia Japan, 2019, 58, 137-143.	0.1	O
120	Bio-imaging pioneers Newly Bio-fluidmechanics. The Proceedings of Autumn Conference of Tohoku Branch, 2020, 2020.56, s3.	0.0	0
121	Shear-induced migration of a transmembrane protein within a vesicle. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2020, 2020.31, 2A24.	0.0	O