Jamie Berta Spangler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526901/publications.pdf

Version: 2024-02-01

34 papers

1,629 citations

16 h-index 414303 32 g-index

38 all docs 38 docs citations

38 times ranked 2377 citing authors

#	Article	IF	Citations
1	De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565, 186-191.	13.7	362
2	Insights into Cytokine–Receptor Interactions from Cytokine Engineering. Annual Review of Immunology, 2015, 33, 139-167.	9.5	204
3	Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity, 2015, 42, 815-825.	6.6	191
4	Interleukin-2 Activity Can Be Fine Tuned with Engineered Receptor Signaling Clamps. Immunity, 2015, 42, 826-838.	6.6	147
5	Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13252-13257.	3.3	135
6	Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell, 2021, 184, 983-999.e24.	13.5	78
7	Multifarious Determinants of Cytokine Receptor Signaling Specificity. Advances in Immunology, 2014, 121, 1-39.	1.1	62
8	Engineering a Single-Agent Cytokine/Antibody Fusion That Selectively Expands Regulatory T Cells for Autoimmune Disease Therapy. Journal of Immunology, 2018, 201, 2094-2106.	0.4	58
9	Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers. ELife, 2017, 6, .	2.8	51
10	Suspendable Hydrogel Nanovials for Massively Parallel Single-Cell Functional Analysis and Sorting. ACS Nano, 2022, 16, 7242-7257.	7.3	35
11	Effect of Pathogenic Cysteine Mutations on FGFR3 Transmembrane Domain Dimerization in Detergents and Lipid Bilayers. Biochemistry, 2007, 46, 11039-11046.	1.2	31
12	Triepitopic Antibody Fusions Inhibit Cetuximab-Resistant BRAF and KRAS Mutant Tumors via EGFR Signal Repression. Journal of Molecular Biology, 2012, 422, 532-544.	2.0	30
13	Synthesis and initial characterization of FGFR3 transmembrane domain: consequences of sequence modifications. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1668, 240-247.	1.4	28
14	Engineered antibody fusion proteins for targeted disease therapy. Trends in Pharmacological Sciences, 2021, 42, 1064-1081.	4.0	23
15	IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight, 2022, 7, .	2.3	23
16	Pharmacodynamic measures within tumors expose differential activity of PD(L)-1 antibody therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
17	Strategies for Glycoengineering Therapeutic Proteins. Frontiers in Chemistry, 2022, 10, 863118.	1.8	19
18	Targeting cancer metastasis with antibody therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1698.	3.3	17

#	Article	IF	CITATIONS
19	A strategy for the selection of monovalent antibodies that span protein dimer interfaces. Journal of Biological Chemistry, 2019, 294, 13876-13886.	1.6	16
20	Antibody–Invertase Fusion Protein Enables Quantitative Detection of SARS-CoV-2 Antibodies Using Widely Available Glucometers. Journal of the American Chemical Society, 2022, 144, 11226-11237.	6.6	13
21	Reprogramming immune proteins as therapeutics using molecular engineering. Current Opinion in Chemical Engineering, 2018, 19, 27-34.	3.8	9
22	Engineered bispecific antibodies targeting the interleukin-6 and -8 receptors potently inhibit cancer cell migration and tumor metastasis. Molecular Therapy, 2022, 30, 3430-3449.	3.7	8
23	Emerging technologies in protein interface engineering for biomedical applications. Current Opinion in Biotechnology, 2019, 60, 82-88.	3.3	7
24	A suspension cellâ€based interaction platform for interrogation of membrane proteins. AICHE Journal, 2020, 66, e16995.	1.8	7
25	Insights into the anticancer mechanisms of interleukin-15 from engineered cytokine therapies. Journal of Clinical Investigation, 2021, 131, .	3.9	5
26	Structural Basis for Signaling Through Shared Common \hat{I}^3 Chain Cytokines. Advances in Experimental Medicine and Biology, 2019, 1172, 1-19.	0.8	3
27	Weaponizing T-cell receptors through molecular engineering. Journal of Biological Chemistry, 2019, 294, 5805-5806.	1.6	2
28	Structure-Guided Molecular Engineering of a Vascular Endothelial Growth Factor Antagonist to Treat Retinal Diseases. Cellular and Molecular Bioengineering, 2020, 13, 405-418.	1.0	2
29	Characterization of Immune Cell Subset Expansion in Response to Therapeutic Treatment in Mice. Methods in Molecular Biology, 2020, 2111, 101-114.	0.4	2
30	A Hybrid Adherent/Suspension Cell-Based Selection Strategy for Discovery of Antibodies Targeting Membrane Proteins. Methods in Molecular Biology, 2022, 2491, 195-216.	0.4	2
31	Innovative synthetic signaling technologies for immunotherapy. Current Opinion in Biomedical Engineering, 2020, 16, 1-8.	1.8	1
32	A versatile design platform for glycoengineering therapeutic antibodies. MAbs, 2022, 14, .	2.6	1
33	Full speed AHEAD in antibody discovery. Nature Chemical Biology, 2021, 17, 1011-1012.	3.9	0
34	Joined at the hip: The role of light chain complementarity determining region 2 in antibody self-association. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	0