Sanchita Sengupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526882/publications.pdf

Version: 2024-02-01

623188 610482 14 25 881 24 citations g-index h-index papers 27 27 27 1197 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient electron transporting and panchromatic absorbing FRET cassettes based on aza-BODIPY and perylenediimide towards multiple metal FRET-Off sensing and ratiometric temperature sensing. Journal of Materials Chemistry C, 2021, 9, 4607-4618.	2.7	13
2	Excited state dynamics of BODIPY-based acceptor–donor–acceptor systems: a combined experimental and computational study. Physical Chemistry Chemical Physics, 2021, 23, 8900-8907.	1.3	5
3	Multi-stimuli programmable FRET based RGB absorbing antennae towards ratiometric temperature, pH and multiple metal ion sensing. Chemical Science, 2021, 12, 15533-15542.	3.7	12
4	Structureâ€Property Correlation of C10â€(H)â€Arylatedâ€Nâ€(pyrenâ€1â€yl)â€picolinamide Regioisomers towar 2+ and Fe 3+ Sensing. ChemistrySelect, 2021, 6, 12022-12031.	rds Çu 0.7	2
5	Structure–property relationships in multi-stimuli responsive BODIPY-biphenyl-benzodithiophene TICT rigidochromic rotors exhibiting (pseudo-)Stokes shifts up to 221 nm. Physical Chemistry Chemical Physics, 2020, 22, 25514-25521.	1.3	9
6	Regioisomeric BODIPY Benzodithiophene Dyads and Triads with Tunable Red Emission as Ratiometric Temperature and Viscosity Sensors. Chemistry - A European Journal, 2019, 25, 14870-14880.	1.7	28
7	Effect of structural isomerism in BODIPY based donor-acceptor co-polymers on their photovoltaic performance. Solar Energy, 2019, 186, 215-224.	2.9	12
8	Dual emissive bodipy–benzodithiophene–bodipy TICT triad with a remarkable Stokes shift of 194 nm. Organic and Biomolecular Chemistry, 2018, 16, 2033-2038.	1.5	22
9	Flexural and bending fatigue studies of perovskite solar cells on Willow Glass substrates. , 2018, , .		0
10	Effect of structural isomerism on charge transport in copolymer of BODIPY and Benzodithiophene. , 2016, , .		0
11	Electrodeposition of Îʻ-phase based Cu–Sn mirror alloy from sulfate-aqueous electrolyte for solar reflector application. Applied Thermal Engineering, 2016, 109, 1003-1010.	3.0	12
12	Regioisomeric donor–acceptor–donor triads based on benzodithiophene and BODIPY with distinct optical properties and mobilities. RSC Advances, 2016, 6, 73645-73649.	1.7	15
13	Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives. Chemical Science, 2016, 7, 3517-3532.	3.7	36
14	Synthesis of Regioisomerically Pure 1,7-Dibromoperylene-3,4,9,10-tetracarboxylic Acid Derivatives. Journal of Organic Chemistry, 2014, 79, 6655-6662.	1.7	78
15	Chlorophyll J-Aggregates: From Bioinspired Dye Stacks to Nanotubes, Liquid Crystals, and Biosupramolecular Electronics. Accounts of Chemical Research, 2013, 46, 2498-2512.	7.6	201
16	Covalently stabilized self-assembled chlorophyll nanorods by olefin metathesis. Chemical Communications, 2012, 48, 5730.	2.2	16
17	Efficient Charge Transport in Semisynthetic Zinc Chlorin Dye Assemblies. Journal of the American Chemical Society, 2012, 134, 16147-16150.	6.6	47
18	Biosupramolecular Nanowires from Chlorophyll Dyes with Exceptional Chargeâ€Transport Properties. Angewandte Chemie - International Edition, 2012, 51, 6378-6382.	7.2	88

#	Article	IF	CITATION
19	Columnar Mesophases Based on Zinc Chlorophyll Derivatives Functionalized with Peripheral Dendron Wedges. Chemistry - A European Journal, 2011, 17, 5300-5310.	1.7	19
20	Theoretical Study of the Optical Properties of Artificial Self-Assembled Zinc Chlorins. Journal of Physical Chemistry C, 2010, 114, 20834-20842.	1.5	24
21	Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11472-11477.	3.3	67
22	Cyclic Selfâ€Assembled Structures of Chlorophyll Dyes on HOPG by the Dendron Wedge Effect. Angewandte Chemie - International Edition, 2009, 48, 7825-7828.	7.2	21
23	Structure–Property Relationships for Selfâ€Assembled Zinc Chlorin Lightâ€Harvesting Dye Aggregates. Chemistry - A European Journal, 2008, 14, 7791-7807.	1.7	82
24	Facile Synthesis, Fluorescence, and Photochromism of Novel Helical Pyrones and Chromenes. Organic Letters, 2006, 8, 4891-4894.	2.4	51
25	Unravelling the excited state dynamics of monofunctionalized mono- and distyryl-BODIPY and perylenediimide dyads. Journal of Materials Chemistry C, 0, , .	2.7	1