Evgeni B Starikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/152665/publications.pdf Version: 2024-02-01

EVCENI R STARKOV

#	Article	IF	CITATIONS
1	How many laws has thermodynamics? What is the sense of the entropy notion? Implications for molecular physical chemistry. Monatshefte Fżr Chemie, 2021, 152, 871-879.	1.8	1
2	The basic features of thermodynamics. Monatshefte Für Chemie, 2021, 152, 1437-1490.	1.8	0
3	Absorption shifts of diastereotopically ligated chlorophyll dimers of photosystem I. Physical Chemistry Chemical Physics, 2019, 21, 6851-6858.	2.8	16
4	Bayesian Statistical Mechanics: Entropy-Enthalpy Compensation and Universal Equation of State at the Tip of Pen. Frontiers in Physics, 2018, 6, .	2.1	3
5	The Interrelationship between Thermodynamics and Energetics: The True Sense of Equilibrium Thermodynamics. Journal of Applied Solution Chemistry and Modeling, 2015, 4, 19-47.	0.4	2
6	â€~Meyer-Neldel Rule': True History of its Development and its Intimate Connection to Classical Thermodynamics. Journal of Applied Solution Chemistry and Modeling, 2014, 3, 15-31.	0.4	15
7	â€~Entropy is anthropomorphic': does this lead to interpretational devalorisation of entropy-enthalpy compensation?. Monatshefte Für Chemie, 2013, 144, 97-102.	1.8	10
8	Valid entropy–enthalpy compensation: Fine mechanisms at microscopic level. Chemical Physics Letters, 2013, 564, 88-92.	2.6	37
9	Entropy-enthalpy compensation may be a useful interpretation tool for complex systems like protein-DNA complexes: An appeal to experimentalists. Applied Physics Letters, 2012, 100, 193701.	3.3	23
10	Entropy–enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chemical Physics Letters, 2012, 538, 118-120.	2.6	60
11	Resonant neutral particle emission in collisions of electrons with protonated peptides with disulfide bonds at high energies. Chemical Physics Letters, 2011, 504, 83-87.	2.6	0
12	Many Faces of Entropy or Bayesian Statistical Mechanics. ChemPhysChem, 2010, 11, 3387-3394.	2.1	11
13	Electrical Conductance in Biological Molecules. Advanced Functional Materials, 2010, 20, 1865-1883.	14.9	90
14	Mutation effects on structural stability of polyglutamine peptides by molecular dynamics simulation. Interdisciplinary Sciences, Computational Life Sciences, 2009, 1, 21-29.	3.6	7
15	Single-molecule DNA conductance in water solutions: Role of DNA low-frequency dynamics. Chemical Physics Letters, 2009, 467, 369-374.	2.6	12
16	Conformation Dependence of DNA Exciton Parentage. Journal of Physical Chemistry B, 2009, 113, 10428-10435.	2.6	39
17	DNA Duplex Length and Salt Concentration Dependence of Enthalpyâ^ Entropy Compensation Parameters for DNA Melting. Journal of Physical Chemistry B, 2009, 113, 11375-11377.	2.6	14
18	Physical Rationale Behind the Nonlinear Enthalpyâ^'Entropy Compensation in DNA Duplex Stability. Journal of Physical Chemistry B, 2009, 113, 4698-4707.	2.6	20

Evgeni B Starikov

#	Article	IF	CITATIONS
19	Resonant neutral-particle emission in collisions of electrons with protonated and sodiated nucleotide monocations in a storage ring. Journal of Physics: Conference Series, 2009, 194, 062027.	0.4	0
20	Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides. Computational Biology and Chemistry, 2008, 32, 102-110.	2.3	35
21	Resonant neutral-particle emission correlated with base–base interactions in collisions of electrons with protonated and sodiated dinucleotide monocations. Chemical Physics Letters, 2008, 467, 154-158.	2.6	6
22	Chemical-to-Mechanical Energy Conversion in Biomacromolecular Machines: A Plasmon and Optimum Control Theory for Directional Work. 1. General Considerations. Journal of Physical Chemistry B, 2008, 112, 8319-8329.	2.6	8
23	PROTEIN FOLDING AS A RESULT OF 'SELF-REGULATED STOCHASTIC RESONANCE': A NEW PARADIGM?. Biophysical Reviews and Letters, 2008, 03, 343-363.	0.8	6
24	Independently Switchable Atomic Quantum Transistors by Reversible Contact Reconstruction. Nano Letters, 2008, 8, 4493-4497.	9.1	40
25	ON MECHANISM OF ENHANCED FLUORESCENCE IN GREEN FLUORESCENT PROTEIN. Biophysical Reviews and Letters, 2007, 02, 221-227.	0.8	2
26	Enthalpyâ^'Entropy Compensation:  A Phantom or Something Useful?. Journal of Physical Chemistry B, 2007, 111, 14431-14435.	2.6	174
27	Mechanism of protonation of oligopeptides and their interaction with alkali cations. Chemical Physics Letters, 2007, 449, 202-207.	2.6	3
28	Quantum diffusion in polaron model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers. European Physical Journal B, 2007, 59, 185-192.	1.5	16
29	Vibrons in DNA: Their Influence on Transport. Nanoscience and Technology, 2007, , 249-262.	1.5	0
30	Resonant neutral-particle emission after collisions of electrons with base-stacked oligonucleotide cations in a storage ring. Chemical Physics Letters, 2006, 430, 380-385.	2.6	7
31	Variable-Temperature Measurements of the Single-Molecule Conductance of Double-Stranded DNA. Angewandte Chemie - International Edition, 2006, 45, 5499-5502.	13.8	63
32	Effects of molecular motion on charge transfer/transport through DNA duplexes with and without base pair mismatch. Molecular Simulation, 2006, 32, 759-764.	2.0	18
33	Comment on "Intrinsic Low Temperature Paramagnetism in B-DNA― Physical Review Letters, 2005, 95, 189801; author reply 189802.	7.8	6
34	BASE SEQUENCE EFFECTS ON CHARGE CARRIER GENERATION IN DNA: A THEORETICAL STUDY. International Journal of Modern Physics B, 2005, 19, 4331-4357.	2.0	28
35	IMPORTANCE OF CHARGE TRANSFER EXCITATIONS IN DNA ELECTRON SPECTRUM: A ZINDO SEMIEMPIRICAL QUANTUM-CHEMICAL STUDY. Modern Physics Letters B, 2004, 18, 825-831.	1.9	32
36	MOVING BREATHERS IN BENT DNA WITH REALISTIC PARAMETERS. Modern Physics Letters B, 2004, 18, 1319-1326.	1.9	15

Evgeni B Starikov

#	Article	IF	CITATIONS
37	WHY DNA ELECTRICAL PROPERTIES CHANGE ON MOLECULAR OXYGEN DOPING: A QUANTUM-CHEMICAL STUDY. Modern Physics Letters B, 2004, 18, 785-790.	1.9	7
38	Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers. Journal of Biological Physics, 2004, 30, 227-238.	1.5	56
39	Role of electron correlations in deoxyribonucleic acid duplexes: is an extended Hubbard Hamiltonian a good model in this case?. Philosophical Magazine Letters, 2003, 83, 699-708.	1.2	51
40	Mechanisms of charge carrier generation in polycrystalline DNA fibers. Physical Chemistry Chemical Physics, 2002, 4, 4523-4527.	2.8	23
41	Structural basis of biotin–RNA aptamer binding: a theoretical study. Chemical Physics Letters, 2002, 363, 39-44.	2.6	1
42	A short C–H···N hydrogen bond with a very strong IR spectroscopic effect. New Journal of Chemistry, 2001, 25, 1111-1113.	2.8	11
43	Negative solubility coefficient of methylated cyclodextrins in water: A theoretical study. Chemical Physics Letters, 2001, 336, 504-510.	2.6	46
44	Nucleic acids as objects of material science: Importance of quantum chemical and quantum mechanical studies. International Journal of Quantum Chemistry, 2000, 77, 859-870.	2.0	10
45	Hartree–Fock crystal orbital calculation on sodium-intercalated fullerites C60Na10 and C60Na11. Chemical Physics, 2000, 256, 149-158.	1.9	2
46	Folding of Oligoglutamines: A Theoretical Approach Based Upon Thermodynamics and Molecular Mechanics. Journal of Biomolecular Structure and Dynamics, 1999, 17, 409-427.	3.5	33
47	Quantum chemical calculations on the weak polar host–guest interactions in crystalline cyclomaltoheptaose (β-cyclodextrin)-but-2-yne-1,4-diol heptahydrate. Carbohydrate Research, 1998, 307, 343-346.	2.3	24
48	Cooperative C≡C-H⋯O-H⋯O hydrogen bonding in a crystalline alkynol. Journal of Chemical Crystallography, 1998, 28, 581-584.	1.1	4
49	Ab initio Hartree-Fock crystal orbital studies on charge-transfer complexes: Different crystal modifications of the same compounds. International Journal of Quantum Chemistry, 1998, 66, 69-89.	2.0	2
50	Three-dimensional Hartree-Fock crystal-orbital calculations on conducting polymers:trans-polyacetylene and polythiophene. International Journal of Quantum Chemistry, 1998, 68, 421-429.	2.0	5
51	Could alkaline-earth-intercalated fullerites actually be semimetals?. International Journal of Quantum Chemistry, 1998, 69, 201-208.	2.0	3
52	Structural and computational analysis of published neutron diffraction data show that crystalline vitamin B12 coenzyme contains a strong intramolecular N-HPh hydrogen bond. Acta Crystallographica Section B: Structural Science, 1998, 54, 94-96.	1.8	11
53	Huntingtin aggregation monitored by dynamic light scattering. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6118-6121.	7.1	59
54	Computational support for the suggested contribution of C—HO=C interactions to the stability of nucleic acid base pairs. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 345-347.	2.5	19

EVGENI B STARIKOV

#	Article	IF	CITATIONS
55	Polyiodide chains in crystalline organic iodides: Ab initio Hartree-Fock crystal orbital study. International Journal of Quantum Chemistry, 1997, 64, 473-479.	2.0	6
56	Weak hydrogen bonding. Part 3. A benzyl group accepting equally strong hydrogen bonds from O–H and C–H donors: 5-ethynyl-5H-dibenzo[a,d]cyclohepten-5-ol. Journal of the Chemical Society Perkin Transactions II, 1996, , 67-71.	0.9	39
57	Ab initio crystal orbital calculations on three-dimensional crystals of large bioorganic molecules and polymers. International Journal of Quantum Chemistry, 1996, 57, 851-860.	2.0	9
58	Three-dimensional crystal orbital calculations on mononucleotide crystallohydrates. I. Sodium mononucleotide crystallohydrates. International Journal of Quantum Chemistry, 1996, 58, 497-515.	2.0	11
59	Initial state of an enzymic reaction. Theoretical prediction of complex formation in the active site of RNase T1. Journal of the American Chemical Society, 1995, 117, 10365-10372.	13.7	16
60	Weak hydrogen bonding. Part 2. The hydrogen bonding nature of short C–H â<¯ï€ contacts: crystallographic, spectroscopic and quantum mechanical studies of some terminal alkynes. Journal of the Chemical Society Perkin Transactions II, 1995, , 1321-1326.	0.9	131
61	Valid Entropy-Enthalpy Compensation: Its True Physical-Chemical Meaning. Journal of Applied Solution Chemistry and Modeling, 0, , .	0.4	2