List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526466/publications.pdf Version: 2024-02-01

		159525	233338
123	3,031	30	45
papers	citations	h-index	g-index
133	133	133	2279
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple) Tj ETQq1	1 0.784314	1 rgBT /Over
2	Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (<i>Malus domestica</i> Borkh.). Plant and Cell Physiology, 2015, 56, 2052-2068.	1.5	118
3	Effect of exogenous GA 3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in â€~Fuji' apple (Malus domestica Borkh.). Plant Physiology and Biochemistry, 2016, 107, 178-186.	2.8	92
4	Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in â€~Yunhongli No. 1' (Pyrus pyrifolia Nakai) pears. Scientia Horticulturae, 2012, 134, 53-59.	1.7	82
5	Response of miR156-SPL Module during the Red Peel Coloration of Bagging-Treated Chinese Sand Pear (Pyrus pyrifolia Nakai). Frontiers in Physiology, 2017, 8, 550.	1.3	71
6	Shoot bending promotes flower bud formation by mi <scp>RNA</scp> â€mediated regulation in apple (<i><scp>M</scp>alus domestica </i> <scp>B</scp> orkh.). Plant Biotechnology Journal, 2016, 14, 749-770.	4.1	69
7	Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Scientific Reports, 2017, 7, 63.	1.6	67
8	Comprehensive analysis of GASA family members in the Malus domestica genome: identification, characterization, and their expressions in response to apple flower induction. BMC Genomics, 2017, 18, 827.	1.2	64
9	Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics, 2014, 15, 1125.	1.2	60
10	The red sport of â€~Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry, 2014, 107, 16-23.	1.4	60
11	Identification and Expression Analysis of Polygalacturonase Family Members during Peach Fruit Softening. International Journal of Molecular Sciences, 2016, 17, 1933.	1.8	60
12	An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified) Tj ETQq0 0 () rgBT /Ove	rlock 10 Tf 5
13	Isolation of anthocyanin biosynthetic genes in red Chinese sand pear (Pyrus pyrifolia Nakai) and their expression as affected by organ/tissue, cultivar, bagging and fruit side. Scientia Horticulturae, 2012, 136, 29-37.	1.7	54
	Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its		- 4

14	suppression of adventitious root primordia formation. Physiologia Plantarum, 2019, 166, 663-676.	2.0	54
15	Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. BMC Genomics, 2016, 17, 150.	1.2	52
16	Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits. Plant Science, 2017, 257, 63-73.	1.7	49
17	Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. International Journal of Molecular Sciences, 2018, 19, 2201.	1.8	48
18	Sequencing of a Wild Apple (<i>Malus baccata</i>) Genome Unravels the Differences Between Cultivated and Wild Apple Species Regarding Disease Resistance and Cold Tolerance. G3: Genes, Genomes, Genetics, 2019, 9, 2051-2060.	0.8	47

#	Article	IF	CITATIONS
19	Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.). Gene, 2018, 651, 106-117.	1.0	46
20	Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica. Frontiers in Physiology, 2017, 8, 253.	1.3	45
21	Effect of exogenous 6-benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in â€~Fuji' apple (Malus domestica Borkh). Plant Growth Regulation, 2016, 79, 65-70.	1.8	43
22	Isolation and Expression Analysis of Anthocyanin Biosynthesis Genes from the Red Chinese Sand Pear, Pyrus pyrifolia Nakai cv. Mantianhong, in Response to Methyl Jasmonate Treatment and UV-B/VIS Conditions. Plant Molecular Biology Reporter, 2014, 32, 428-437.	1.0	42
23	iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple. International Journal of Molecular Sciences, 2018, 19, 667.	1.8	41
24	Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica). Plant Physiology and Biochemistry, 2018, 123, 81-93.	2.8	40
25	Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biology and Technology, 2014, 91, 64-71.	2.9	39
26	Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. Frontiers in Plant Science, 2019, 10, 616.	1.7	38
27	Robustness improvement of NIR-based determination of soluble solids in apple fruit by local calibration. Postharvest Biology and Technology, 2018, 139, 82-90.	2.9	36
28	miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks. Plant Physiology and Biochemistry, 2019, 139, 66-81.	2.8	36
29	Analysis of different pigmentation patterns in â€~Mantianhong' (Pyrus pyrifolia Nakai) and â€~Cascade' (Pyrus communis L.) under bagging treatment and postharvest UV-B/visible irradiation conditions. Scientia Horticulturae, 2013, 151, 75-82.	1.7	35
30	Identification of TPS family members in apple (Malus x domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry, 2017, 120, 10-23.	2.8	34
31	Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. BMC Plant Biology, 2020, 20, 536.	1.6	34
32	Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the â€~Nagafu No. 2' and â€~Qinguan' Varieties of Apple (Malus domestica Borkh.). Frontiers in Plant Science, 2016, 7, 908.	1.7	33
33	Effect of exogenous Brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Regulation, 2017, 82, 391-401.	1.8	33
34	Genome Identification of B-BOX Gene Family Members in Seven Rosacea Species and Their Expression Analysis in Response to Flower Induction in Malus domestica. Molecules, 2018, 23, 1763.	1.7	32
35	Expression analysis of key auxin synthesis, transport, and metabolism genes in different young dwarfing apple trees. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	31
36	Proteome Analyses Using iTRAQ Labeling Reveal Critical Mechanisms in Alternate Bearing <i>Malus prunifolia</i> . Journal of Proteome Research, 2016, 15, 3602-3616.	1.8	30

#	Article	IF	CITATIONS
37	Phylogenetic analysis of IDD gene family and characterization of its expression in response to flower induction in Malus. Molecular Genetics and Genomics, 2017, 292, 755-771.	1.0	29
38	Chronic cement dust load induce novel damages in foliage and buds of Malus domestica. Scientific Reports, 2020, 10, 12186.	1.6	29
39	Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple. Gene, 2018, 666, 44-57.	1.0	28
40	Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (<i>Malus domestica</i> Borkh.) Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. Plant and Cell Physiology, 2019, 60, 1702-1721.	1.5	27
41	Genome-wide identification, evolution, and expression analysis of GATA transcription factors in apple (Malus × domestica Borkh.). Gene, 2017, 627, 460-472.	1.0	26
42	Complete Chloroplast Genomes from Sanguisorba: Identity and Variation Among Four Species. Molecules, 2018, 23, 2137.	1.7	25
43	Correlation of production constraints with the yield gap of apple cropping systems in Luochuan County, China. Journal of Integrative Agriculture, 2019, 18, 1714-1725.	1.7	25
44	Transcriptomic analysis reveals the regulatory module of apple (Malus × domestica) floral transition in response to 6-BA. BMC Plant Biology, 2019, 19, 93.	1.6	25
45	Genome-wide identification of the 14–3-3 gene family and its participation in floral transition by interacting with TFL1/FT in apple. BMC Genomics, 2021, 22, 41.	1.2	25
46	Spermidine application affects the adventitious root formation and root morphology of apple rootstock by altering the hormonal profile and regulating the gene expression pattern. Scientia Horticulturae, 2020, 266, 109310.	1.7	24
47	Genome-Wide Identification of the MdKNOX Gene Family and Characterization of Its Transcriptional Regulation in Malus domestica. Frontiers in Plant Science, 2020, 11, 128.	1.7	24
48	Molecular role of cytokinin in bud activation and outgrowth in apple branching based on transcriptomic analysis. Plant Molecular Biology, 2018, 98, 261-274.	2.0	23
49	Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Scientia Horticulturae, 2021, 275, 109642.	1.7	23
50	miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant "Yanfu 6― Frontiers in Plant Science, 2017, 8, 441.	1.7	22
51	Mediation of Flower Induction by Gibberellin and its Inhibitor Paclobutrazol: mRNA and miRNA Integration Comprises Complex Regulatory Cross-Talk in Apple. Plant and Cell Physiology, 2018, 59, 2288-2307.	1.5	21
52	Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple. BMC Plant Biology, 2018, 18, 173.	1.6	21
53	Genome-wide identification, characterization and expression analysis of novel long non-coding RNAs that mediate IBA-induced adventitious root formation in apple rootstocks. Plant Growth Regulation, 2019, 87, 287-302.	1.8	21
54	Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.). Plant Molecular Biology, 2019, 99, 45-66.	2.0	21

#	Article	IF	CITATIONS
55	A transcriptome analysis of two apple (Malus × domestica) cultivars with different flowering abilities reveals a gene network module associated with floral transitions. Scientia Horticulturae, 2018, 239, 269-281.	1.7	20
56	Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiology and Biochemistry, 2021, 165, 123-136.	2.8	20
57	Effect of fruit maturity on UV-B-induced post-harvest anthocyanin accumulation in red Chinese sand pear. Acta Physiologiae Plantarum, 2013, 35, 2857-2866.	1.0	19
58	ldentification and expression analysis of cytokinin response-regulator genes during floral induction in apple (Malus domestica Borkh). Plant Growth Regulation, 2017, 83, 455-464.	1.8	19
59	Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering â€~Qinguan' and weakly flowering â€~Nagafu no. 2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology, 2018, 18, 370.	1.6	19
60	Zinc Finger-Homeodomain Genes: Evolution, Functional Differentiation, and Expression Profiling Under Flowering-Related Treatments and Abiotic Stresses in Plants. Evolutionary Bioinformatics, 2019, 15, 117693431986793.	0.6	19
61	Effect of exogenous indole-3-butanoic acid (IBA) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scientia Horticulturae, 2018, 232, 112-120.	1.7	18
62	Genome-wide identification and expression analysis of GRF genes regulating apple tree architecture. Tree Genetics and Genomes, 2018, 14, 1.	0.6	18
63	Mdm-miR160 Participates in Auxin-Induced Adventitious Root formation of apple rootstock. Scientia Horticulturae, 2020, 270, 109442.	1.7	17
64	Genome-wide identification and expression analysis of brassinosteroid biosynthesis and metabolism genes regulating apple tree shoot and lateral root growth. Journal of Plant Physiology, 2018, 231, 68-85.	1.6	16
65	MdKNOX15, a class I knotted-like transcription factor of apple, controls flowering and plant height by regulating GA levels through promoting the MdGA20x7 transcription. Environmental and Experimental Botany, 2021, 185, 104411.	2.0	16
66	Transcriptome analysis reveals the inhibitory nature of high nitrate during adventitious roots formation in the apple rootstock. Physiologia Plantarum, 2021, 173, 867-882.	2.6	16
67	Expression of genes in the potential regulatory pathways controlling alternate bearing in â€~Fuji' (Malus domestica Borkh.) apple trees during flower induction. Plant Physiology and Biochemistry, 2018, 132, 579-589.	2.8	15
68	Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica Borkh.). Molecular Genetics and Genomics, 2018, 293, 1547-1563.	1.0	15
69	MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. Plant Science, 2021, 302, 110701.	1.7	15
70	The TAZ domain-containing proteins play important role in the heavy metals stress biology in plants. Environmental Research, 2021, 197, 111030.	3.7	15
71	Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). Journal of Zhejiang University: Science B, 2013, 14, 1070-1083.	1.3	14
72	Dynamic Cytosine DNA Methylation Patterns Associated with mRNA and siRNA Expression Profiles in Alternate Bearing Apple Trees. Journal of Agricultural and Food Chemistry, 2019, 67, 5250-5264.	2.4	14

#	Article	IF	CITATIONS
73	Construction of a high-density SNP-based genetic map and identification of fruit-related QTLs and candidate genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 2020, 20, 438.	1.6	14
74	Genome-wide identification and expression profiling of the YUCCA gene family in Malus domestica. Scientific Reports, 2020, 10, 10866.	1.6	14
75	Mdm-MIR393b-mediated adventitious root formation by targeted regulation of MdTIR1A expression and weakened sensitivity to auxin in apple rootstock. Plant Science, 2021, 308, 110909.	1.7	14
76	The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening. Planta, 2021, 254, 22.	1.6	14
77	High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRNAs expression profiles. Scientia Horticulturae, 2021, 286, 110230.	1.7	14
78	Characterization of the complete chloroplast genome of the Chinese crabapple Malus prunifolia (Rosales: Rosaceae: Maloideae). Conservation Genetics Resources, 2016, 8, 227-229.	0.4	13
79	Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis. Journal of Proteomics, 2018, 173, 139-154.	1.2	13
80	Genome-wide identification of SERK genes in apple and analyses of their role in stress responses and growth. BMC Genomics, 2018, 19, 962.	1.2	13
81	Shoot tip cryotherapy for plant pathogen eradication. Plant Pathology, 2022, 71, 1241-1254.	1.2	12
82	Genome-wide identification and expression profiling analysis of brassinolide signal transduction genes regulating apple tree architecture. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	11
83	Mining and expression analysis of candidate genes involved in regulating the chilling requirement fulfillment of Paeonia lactiflora †Hang Baishao'. BMC Plant Biology, 2017, 17, 262.	1.6	11
84	Cement dust induce stress and attenuates photosynthesis in Arachis hypogaea. Environmental Science and Pollution Research, 2019, 26, 19490-19501.	2.7	11
85	Selection and Validation of Reliable Reference Genes for Gene Expression Studies in Different Genotypes and TRV-Infected Fruits of Peach (Prunus persica L. Batsch) during Ripening. Genes, 2022, 13, 160.	1.0	11
86	Evaluating the Comprehensive Performance of Herbaceous Peonies at low latitudes by the Integration of Long-running Quantitative Observation and Multi-Criteria Decision Making Approach. Scientific Reports, 2019, 9, 15079.	1.6	10
87	Molecular mechanism of MdWUS2–MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. Journal of Experimental Botany, 2021, 72, 4822-4838.	2.4	10
88	Nitrate application affects root morphology by altering hormonal status and gene expression patterns in B9 apple rootstock nursery plants. Fruit Research, 2021, 1, 1-11.	0.9	10
89	Transcriptome Analysis Reveals New Insights into <i>MdBAK1</i> Mediated Plant Growth in <i>Malus domestica</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9757-9771.	2.4	9
90	Identification of apple TFL1-interacting proteins uncovers an expanded flowering network. Plant Cell Reports, 2021, 40, 2325-2340.	2.8	9

#	Article	IF	CITATIONS
91	Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in â€~Qingzhen 1' apple plants. Plant Cell, Tissue and Organ Culture, 0, , 1.	1.2	9
92	Early Sucrose Degradation and the Dominant Sucrose Cleavage Pattern Influence Lycoris sprengeri Bulblet Regeneration In Vitro. International Journal of Molecular Sciences, 2021, 22, 11890.	1.8	9
93	Insights into Factors Controlling Adventitious Root Formation in Apples. Horticulturae, 2022, 8, 276.	1.2	9
94	PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. Frontiers in Plant Science, 2022, 13, 844055.	1.7	9
95	Identification of Peach NAP Transcription Factor Genes and Characterization of their Expression in Vegetative and Reproductive Organs during Development and Senescence. Frontiers in Plant Science, 2016, 7, 147.	1.7	8
96	Transcriptome Analysis Reveals Multiple Genes and Complex Hormonal-Mediated Interactions with PEG during Adventitious Root Formation in Apple. International Journal of Molecular Sciences, 2022, 23, 976.	1.8	8
97	Efficient somatic embryogenesis and bulblet regeneration of the endangered bulbous flower Griffinia liboniana. Plant Cell, Tissue and Organ Culture, 2018, 135, 523-533.	1.2	7
98	Annual growth cycle observation, hybridization and forcing culture for improving the ornamental application of Paeonia lactiflora Pall. in the low-latitude regions. PLoS ONE, 2019, 14, e0218164.	1.1	7
99	Modeling canopy photosynthesis and light interception partitioning among shoots in bi-axis and single-axis apple trees (Malus domestica Borkh.). Trees - Structure and Function, 2021, 35, 845-861.	0.9	7
100	Nitrate Application Induces Adventitious Root Growth by Regulating Gene Expression Patterns in Apple Rootstocks. Journal of Plant Growth Regulation, 2022, 41, 3467-3478.	2.8	7
101	A Comparative Study between Evergreen and Deciduous Daylily Species Reveals the Potential Contributions of Winter Shoot Growth and Leaf Freezing Tolerance to Foliar Habits. Journal of Plant Growth Regulation, 2020, 39, 1030-1045.	2.8	6
102	Identification of CDF family members in apple and their expression in response to sucrose during floral induction. Journal of Plant Interactions, 2020, 15, 241-256.	1.0	6
103	MADS-box transcription factors determine the duration of temporary winter dormancy in closely related evergreen and deciduous <i>lris</i> spp Journal of Experimental Botany, 2022, 73, 1429-1449.	2.4	6
104	Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis. International Journal of Molecular Sciences, 2022, 23, 581.	1.8	6
105	Characterization of the complete chloroplast genome of the wild Himalayan pear Pyrus pashia (Rosales: Rosaceae: Maloideae). Conservation Genetics Resources, 2017, 9, 569-571.	0.4	5
106	Comparative genomics and phylogenetic perspectives of six fertile <i>Lycoris</i> species endemic to East Asia based on plastome characterization. Nordic Journal of Botany, 2022, 2022, .	0.2	5
107	Transcriptome analysis reveals the regulatory mechanism by which <i>MdWOX11</i> suppresses adventitious shoot formation in apple. Horticulture Research, 2022, 9, .	2.9	5
108	MdGRF11, a growth-regulating factor, participates in the regulation of flowering time and interacts with MdTFL1/MdFT1 in apple. Plant Science, 2022, 321, 111339.	1.7	5

#	Article	IF	CITATIONS
109	MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC Plant Biology, 2022, 22, .	1.6	5
110	Genome-wide Identification and Expression Analysis of Half-size ABCG Genes in Malus × domestica. Horticultural Plant Journal, 2018, 4, 45-54.	2.3	4
111	Effects of exogenous methyl-jasmonate on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scientia Horticulturae, 2021, 289, 110419.	1.7	4
112	Effect of darkness treatment on the morphology, hormone status and gene expression of developing adventitious root in apple rootstock. Plant Cell, Tissue and Organ Culture, 2022, 148, 331-346.	1.2	4
113	PrupeFUL4 regulates ripening and softening of peach fruits through ethylene biosynthesis. Acta Physiologiae Plantarum, 2022, 44, 1.	1.0	4
114	Transcriptome analysis reveals that cytokinins inhibit adventitious root formation through the MdRR12-MdCRF8 module in apple rootstock. Plant Science, 2022, 318, 111220.	1.7	4
115	Different miRNAs and hormones are involved in PEG-induced inhibition of adventitious root formation in apple. Scientia Horticulturae, 2022, 303, 111206.	1.7	4
116	Hybrid Origin of <i>Lycoris shaanxiensis</i> Revealed by Karyotype Survey. Cytologia, 2018, 83, 133-136.	0.2	3
117	A new Amaryllidaceae genus, Shoubiaonia , from Yunnan Province, China. Nordic Journal of Botany, 2021, 39, .	0.2	3
118	PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. Horticulturae, 2022, 8, 379.	1.2	3
119	The East Asian wild apples, <i>Malus baccata</i> (L.) Borkh and <i>Malus hupehensis</i> (Pamp.) Rehder., are additional contributors to the genomes of cultivated European and Chinese varieties. Molecular Ecology, 2023, 32, 5125-5139.	2.0	3
120	The nutrient, hormone, and antioxidant status of scion affects the rootstock activity in apple. Scientia Horticulturae, 2022, 302, 111157.	1.7	3
121	A Reduced Starch Level in Plants at Early Stages of Infection by Viruses Can Be Considered a Broad-Range Indicator of Virus Presence. Viruses, 2022, 14, 1176.	1.5	2
122	GENETIC DIVERSITY OF RED SKINNED CHINESE SAND PEAR CULTIVARS REVEALED BY AFLP MARKERS. Acta Horticulturae, 2011, , 679-684.	0.1	1
123	Photosynthetic capacity in â€~Fuji' apple trees influenced by interstocks at leaf and canopy scale. Acta Horticulturae, 2019, , 77-84.	0.1	1