Ondrej Vopicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer, 2017, 113, 283-294.	1.8	123
2	Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. Journal of Membrane Science, 2013, 434, 148-160.	4.1	77
3	CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing. Journal of Membrane Science, 2017, 528, 64-71.	4.1	68
4	Permeation and sorption properties of poly(ether-block-amide) membranes filled by two types of zeolites. Separation and Purification Technology, 2011, 80, 418-427.	3.9	62
5	Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. Journal of Membrane Science, 2009, 338, 161-174.	4.1	56
6	Mixed gas sorption in glassy polymeric membranes: II. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1). Journal of Membrane Science, 2014, 459, 264-276.	4.1	56
7	Mixed gas sorption in glassy polymeric membranes: I. CO2/CH4 and n-C4/CH4 mixtures sorption in poly(1-trimethylsilyl-1-propyne) (PTMSP). Journal of Membrane Science, 2014, 449, 97-108.	4.1	56
8	Modeling gas and vapor sorption in a polymer of intrinsic microporosity (PIM-1). Fluid Phase Equilibria, 2013, 347, 35-44.	1.4	42
9	Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane Science, 2020, 594, 117460.	4.1	39
10	Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation. Journal of Membrane Science, 2016, 520, 895-906.	4.1	34
11	Pervaporation and vapour permeation of methanol – dimethyl carbonate mixtures through PIM-1 membranes. Separation and Purification Technology, 2019, 217, 206-214.	3.9	29
12	Gas sorption in polymers of intrinsic microporosity: The difference between solubility coefficients determined via time-lag and direct sorption experiments. Journal of Membrane Science, 2019, 570-571, 522-536.	4.1	29
13	Synthesis, preparation and characterization of novel hyperbranched 6FDA-TTM based polyimide membranes for effective CO2 separation: Effect of embedded mesoporous silica particles and siloxane linkages. Polymer, 2018, 144, 33-42.	1.8	27
14	Sorption of vapours and liquids in PDMS: novel data and analysis with the GAB model of multilayer adsorption. European Polymer Journal, 2014, 60, 49-57.	2.6	26
15	Thin, Highâ€Flux, Selfâ€&tanding, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures. Chemistry - A European Journal, 2017, 23, 11416-11422.	1.7	26
16	Nafion® modified with primary amines: chemical structure, sorption properties and pervaporative separation of methanol-dimethyl carbonate mixtures. European Polymer Journal, 2018, 99, 268-276.	2.6	25
17	Analysis of gas sorption in glassy polymers with the GAB model: An alternative to the dual mode sorption model. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1490-1495.	2.4	24
18	Sorption of methanol, dimethyl carbonate, methyl acetate, and acetone vapors in CTA and PTMSP: General findings from the GAB Analysis. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 561-569.	2.4	23

ONDREJ VOPICKA

#	Article	IF	CITATIONS
19	Blended silicone–ionic liquid membranes: Transport properties of butan-1-ol vapor. European Polymer Journal, 2010, 46, 123-128.	2.6	21
20	Poly(butylene succinate)-cellulose triacetate blends: permeation, pervaporation, sorption and physical structure. Polymer Testing, 2018, 65, 468-479.	2.3	21
21	A new sorption model with a dynamic correction for the determination of diffusion coefficients. Journal of Membrane Science, 2009, 330, 51-56.	4.1	20
22	Mixed matrix membranes based on hyperbranched polyimide and mesoporous silica for gas separation. Desalination and Water Treatment, 2011, 34, 211-215.	1.0	20
23	Separation of methanol-dimethyl carbonate vapour mixtures with PDMS and PTMSP membranes. Separation and Purification Technology, 2017, 174, 1-11.	3.9	20
24	Aroma scalping characteristics of polybutylene succinate based films. Polymer Testing, 2015, 46, 108-115.	2.3	17
25	Ethanol sorption and permeation in fluoropolymer gel membrane containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. Chemical Engineering and Processing: Process Intensification, 2015, 94, 72-77.	1.8	16
26	Sorption of vapour mixtures of methanol and dimethyl carbonate in PDMS: Experimental study. European Polymer Journal, 2015, 73, 480-486.	2.6	15
27	Comparison of transport properties of hyperbranched and linear polyimides. Desalination and Water Treatment, 2010, 14, 165-169.	1.0	14
28	Measuring the transient diffusion of vapor mixtures through dense membranes. Journal of Membrane Science, 2010, 350, 217-225.	4.1	13
29	Vapour permeation and sorption in fluoropolymer gel membrane based on ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide. Chemical Papers, 2014, 68, .	1.0	13
30	Comparison of pervaporation and perstraction for the separation of p‑xylene/m‑xylene mixtures using PDMS and CTA membranes. Separation and Purification Technology, 2021, 274, 118986.	3.9	13
31	Selective Separation of 1-Butanol from Aqueous Solution through Pervaporation Using PTSMP-Silica Nano Hybrid Membrane. Membranes, 2020, 10, 55.	1.4	12
32	Cyclopentyl methyl ether, tert-amyl methyl ether and tert-butyl methyl ether: density, dynamic viscosity, surface tension and refractive index. Chemical Papers, 2018, 72, 947-954.	1.0	11
33	Transient and Steady Pervaporation of 1-Butanol–Water Mixtures through a Poly[1-(Trimethylsilyl)-1-Propyne] (PTMSP) Membrane. Polymers, 2019, 11, 1943.	2.0	11
34	CeO2-Blended Cellulose Triacetate Mixed-Matrix Membranes for Selective CO2 Separation. Membranes, 2021, 11, 632.	1.4	11
35	Anomalous Phenomena Occurring during Permeation and Sorption of C1–C6 Alcohol Vapors in Teflon AF 2400. Industrial & Engineering Chemistry Research, 2013, 52, 10406-10417.	1.8	10
36	Sorption of vapour mixtures of methanol and dimethyl carbonate in PTMSP: Cooperative and competitive sorption in one system. European Polymer Journal, 2016, 75, 243-250.	2.6	10

ONDREJ VOPICKA

#	Article	IF	CITATIONS
37	New approach for description of sorption and swelling phenomena in liquid + polymer membrane systems. Separation and Purification Technology, 2017, 179, 475-485.	3.9	10
38	Sorption, swelling and plasticization of PIM-1 in methanol-dimethyl carbonate vapour mixtures. Polymer, 2021, 218, 123509.	1.8	10
39	Swelling and plasticization of PDMS and PTMSP in methanol and dimethyl carbonate vapors and liquids: Volume, mechanical properties, Raman spectra. Polymer, 2020, 188, 122140.	1.8	8
40	Nafion modified with simple bases and amino acid derivatives: Survey of physical properties and search for effective pervaporation membranes. Polymer Engineering and Science, 2021, 61, 891-905.	1.5	8
41	Phenomenology of vapour sorption in polymers of intrinsic microporosity PIM-1 and PIM-EA-TB: envelopment of sorption isotherms. Current Opinion in Chemical Engineering, 2022, 35, 100786.	3.8	8
42	Polyimides crossâ€linked with amino group ontaining compounds. Polymer Engineering and Science, 2017, 57, 1367-1373.	1.5	6
43	Solubility and diffusivity of six volatile compounds in ionic liquids [BMIM][Tf2N], [BMPy][Tf2N], [BMIM][TfO] and [BMPy][TfO]. Fluid Phase Equilibria, 2022, 557, 113418.	1.4	5
44	Hyperbranched Polyimide-Silica Hybrid Materials: Synthesis, Structure, Dynamics, and Gas Transport Properties. Journal of Macromolecular Science - Physics, 2013, 52, 632-649.	0.4	4
45	Sorption of organic liquids in poly(ethylene chlorotrifluoroethylene) Halar®901: Experimental and theoretical analysis. Polymer Testing, 2017, 58, 199-207.	2.3	4
46	One-pot neutron imaging of surface phenomena, swelling and diffusion during methane absorption in ethanol and n-decane under high pressure. PLoS ONE, 2020, 15, e0238470.	1.1	4
47	Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate/Pebax® 1657 Composite Membranes and Their Gas Separation Performance. Membranes, 2020, 10, 224.	1.4	4
48	Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes: A study of gas and vapour transport properties. Journal of Membrane Science, 2022, 648, 120343.	4.1	3
49	Evaluation of Two Methods for Measuring Vapor Sorption in Polymers. Separation Science and Technology, 2010, 45, 1260-1264.	1.3	2
50	Pervaporation of dichloromethaneâ€cyclopentane and methylalâ€cyclopentane mixtures through membranes from chloroprene rubber. Journal of Applied Polymer Science, 2021, 138, 51320.	1.3	2
51	Coupling effect during vapour permeation of organic mixtures through polymeric membranes. Desalination and Water Treatment, 2010, 14, 47-51.	1.0	1
52	[P1.038] Sorption and Diffusion of Gases and Vapors in Poly (exo,endo-3,4-bis(Trimethylsilyl)Tricyclononene). Procedia Engineering, 2012, 44, 760-761.	1.2	1
53	[P1.037] Sorption of CO2/CH4 Mixtures in PIM-1 and PTMSP Membranes: Experimental Data at 35°C and Modeling. Procedia Engineering, 2012, 44, 758-759.	1.2	0
54	Non Equilibrium Modeling of Sorption of Gases and Vapors in Polymers of Intrinsic Microporosity (PIM). Procedia Engineering, 2012, 44, 147-149.	1.2	0