Jose T Bras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526251/publications.pdf

Version: 2024-02-01

11928 31949 156 20,872 53 134 citations h-index g-index papers 176 176 176 25390 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diagnosis and management of dementia with Lewy bodies. Neurology, 2017, 89, 88-100.	1.5	2,805
2	<i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.	13.9	2,385
3	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
4	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	9.4	1,685
5	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	4.9	1,414
6	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
7	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
8	Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain, 2009, 132, 1783-1794.	3.7	612
9	Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature, 2014, 505, 550-554.	13.7	425
10	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	4.5	374
11	The age factor in Alzheimer's disease. Genome Medicine, 2015, 7, 106.	3.6	271
12	<i>SNCA</i> variants are associated with increased risk for multiple system atrophy. Annals of Neurology, 2009, 65, 610-614.	2.8	257
13	Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Human Molecular Genetics, 2012, 21, 2646-2650.	1.4	231
14	Mutations in ANO3 Cause Dominant Craniocervical Dystonia: Ion Channel Implicated in Pathogenesis. American Journal of Human Genetics, 2012, 91, 1041-1050.	2.6	224
15	DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurology, The, 2008, 7, 207-215.	4.9	202
16	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	4.9	195
17	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	1.4	178
18	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2012, 21, 4996-5009.	1.4	176

#	Article	IF	CITATIONS
19	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	4.9	175
20	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2014, 137, 2480-2492.	3.7	169
21	The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders. Lancet Neurology, The, 2018, 17, 721-730.	4.9	161
22	<i>SQSTM1</i> Mutations in French Patients With Frontotemporal Dementia or Frontotemporal Dementia With Amyotrophic Lateral Sclerosis. JAMA Neurology, 2013, 70, 1403-10.	4.5	153
23	Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Medicine, 2016, 13, e1001976.	3.9	150
24	Genetic Analysis of Inherited Leukodystrophies. JAMA Neurology, 2013, 70, 875.	4.5	147
25	Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiology of Aging, 2013, 34, 2699-2714.	1.5	145
26	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	4.9	128
27	Mutations in PNKP Cause Recessive Ataxia with Oculomotor Apraxia Type 4. American Journal of Human Genetics, 2015, 96, 474-479.	2.6	127
28	Emerging pathways in genetic Parkinson's disease: Potential role of ceramide metabolism in Lewy body disease. FEBS Journal, 2008, 275, 5767-5773.	2.2	121
29	A novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiology of Aging, 2013, 34, 2890.e1-2890.e5.	1.5	113
30	Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nature Reviews Neuroscience, 2012, 13, 453-464.	4.9	110
31	Missense variant in TREML2 protects against Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1510.e19-1510.e26.	1.5	110
32	Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Movement Disorders, 2012, 27, 526-532.	2.2	108
33	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	1.5	108
34	Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Portugal. Neurobiology of Aging, 2009, 30, 1515-1517.	1.5	97
35	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	1.5	96
36	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	4.5	95

#	Article	IF	Citations
37	The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genetics in Medicine, 2017, 19, 45-52.	1.1	94
38	Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 862-871.	0.4	93
39	Loss-of-function mutations in $\langle i\rangle$ RAB39B $\langle i\rangle$ are associated with typical early-onset Parkinson disease. Neurology: Genetics, 2015, 1, e9.	0.9	90
40	SnapShot: Genetics of Alzheimer's Disease. Cell, 2013, 155, 968-968.e1.	13.5	86
41	Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiology of Aging, 2014, 35, 2419.e23-2419.e25.	1.5	84
42	Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity. British Journal of Anaesthesia, 2019, 123, e249-e253.	1.5	82
43	SnapShot: Genetics of Parkinson's Disease. Cell, 2015, 160, 570-570.e1.	13.5	79
44	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	1.5	78
45	TYROBP genetic variants in early-onset Alzheimer's disease. Neurobiology of Aging, 2016, 48, 222.e9-222.e15.	1.5	69
46	The Genetics of Dementia with Lewy Bodies: Current Understanding and Future Directions. Current Neurology and Neuroscience Reports, 2018, 18, 67.	2.0	69
47	Alzheimer's disease polygenic risk score as a predictor of conversion from mild-cognitive impairment. Translational Psychiatry, 2019, 9, 154.	2.4	69
48	SnapShot: Genetics of ALS and FTD. Cell, 2015, 160, 798-798.e1.	13.5	68
49	Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. Genome Medicine, 2017, 9, 100.	3.6	67
50	Frequency of Loss of Function Variants in <i>LRRK2</i> in Parkinson Disease. JAMA Neurology, 2018, 75, 1416.	4.5	66
51	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	2.2	66
52	Study protocol: Insight 46 \hat{a} a neuroscience sub-study of the MRC National Survey of Health and Development. BMC Neurology, 2017, 17, 75.	0.8	64
53	A systematic screening to identify <i>de novo</i> mutations causing sporadic early-onset Parkinson's disease. Human Molecular Genetics, 2015, 24, 6711-6720.	1.4	59
54	Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Human Molecular Genetics, 2014, 23, R47-R53.	1.4	57

#	Article	IF	CITATIONS
55	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	2.2	57
56	Influence of Single Nucleotide Polymorphisms in <i>COMT</i> , , &l	0.8	56
57	Investigating the role of rare coding variability in Mendelian dementia genes (APP , PSEN1 , PSEN2 , GRN) Tj ETQ	q1 _{1.5} 0.78	4314 rgBT /C
58	Analysis of Parkinson disease patients from Portugal for mutations in SNCA, PRKN, PINK1 and LRRK2. BMC Neurology, 2008, 8, 1.	0.8	52
59	Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Human Molecular Genetics, 2016, 25, ddw348.	1.4	48
60	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	2.2	47
61	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	1.5	47
62	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	5.8	44
63	A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Molecular Psychiatry, 2020, 25, 629-639.	4.1	42
64	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	2.8	42
65	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	4.4	41
66	ABCA7 p.G215S as potential protective factor for Alzheimer's disease. Neurobiology of Aging, 2016, 46, 235.e1-235.e9.	1.5	37
67	Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, 500-514.	0.4	36
68	Current concepts and controversies in the pathogenesis of Parkinson's disease dementia and Dementia with Lewy Bodies. F1000Research, 2017, 6, 1604.	0.8	35
69	Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer's disease identifies a homozygous CTSF mutation. Neurobiology of Aging, 2016, 46, 236.e1-236.e6.	1.5	34
70	Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease. PLoS ONE, 2016, 11, e0150079.	1.1	34
71	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. Neurolmage, 2019, 189, 645-654.	2.1	33
72	A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain, 2018, 141, 365-376.	3.7	32

#	Article	IF	Citations
73	Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. Neurobiology of Aging, 2018, 66, 179.e17-179.e29.	1.5	32
74	Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer's disease. Neurobiology of Aging, 2018, 62, 244.e1-244.e8.	1.5	30
75	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	2.1	29
76	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	2.8	29
77	Youngâ€onset parkinsonism due to homozygous duplication of αâ€synuclein in a consanguineous family. Movement Disorders, 2012, 27, 1829-1830.	2.2	27
78	Genetic architecture of common non-Alzheimer's disease dementias. Neurobiology of Disease, 2020, 142, 104946.	2.1	27
79	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	2.4	27
80	A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain, 2022, 145, 1805-1817.	3.7	27
81	Genome-wide association of polygenic risk extremes for Alzheimer's disease in the UK Biobank. Scientific Reports, 2022, 12, 8404.	1.6	27
82	A nonsense mutation in PRNP associated with clinical Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2656.e13-2656.e16.	1.5	26
83	The Chihuahua dog: A new animal model for neuronal ceroid lipofuscinosis CLN7 disease?. Journal of Neuroscience Research, 2016, 94, 339-347.	1.3	26
84	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	1.1	26
85	Polygenic risk scores for Alzheimer's disease are related to dementia risk in APOE É>4 negatives. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12142.	1.2	25
86	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.4	24
87	<i><scp>RARS</scp>2</i> mutations in a sibship with infantile spasms. Epilepsia, 2016, 57, e97-e102.	2.6	23
88	Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. International Journal of Molecular Sciences, 2015, 16, 24629-24655.	1.8	21
89	Mutation analysis of sporadic early-onset Alzheimer's disease using the NeuroX array. Neurobiology of Aging, 2017, 49, 215.e1-215.e8.	1.5	21
90	KCNN2 mutation in autosomalâ€dominant tremulous myoclonusâ€dystonia. European Journal of Neurology, 2020, 27, 1471-1477.	1.7	21

#	Article	IF	Citations
91	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	2.8	21
92	Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia. Brain Communications, 2020, 2, .	1.5	20
93	Alzheimer's Disease Genetics: Review of Novel Loci Associated with Disease. Current Genetic Medicine Reports, 2020, 8, 1-16.	1.9	20
94	Mutation Frequency of the Major Frontotemporal Dementia Genes, MAPT, GRN and C9ORF72 in a Turkish Cohort of Dementia Patients. PLoS ONE, 2016, 11, e0162592.	1.1	19
95	Mutation of <i>TBCK</i> causes a rare recessive developmental disorder. Neurology: Genetics, 2016, 2, e76.	0.9	19
96	Multi-infarct dementia of Swedish type is caused by a 3'UTR mutation of COL4A1. Brain, 2017, 140, e29-e29.	3.7	19
97	An AARS variant as the likely cause of Swedish type hereditary diffuse leukoencephalopathy with spheroids. Acta Neuropathologica Communications, 2019, 7, 188.	2.4	19
98	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	2.8	19
99	Challenge accepted: uncovering the role of rare genetic variants in Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, 3.	4.4	19
100	Assessment of Parkinson's disease risk loci in Greece. Neurobiology of Aging, 2014, 35, 442.e9-442.e16.	1.5	18
101	Clinical, ocular motor, and imaging profile of Niemann-Pick type C heterozygosity. Neurology, 2020, 94, e1702-e1715.	1.5	18
102	A Non- <i>APOE</i> Polygenic Risk Score for Alzheimer's Disease Is Associated With Cerebrospinal Fluid Neurofilament Light in a Representative Sample of Cognitively Unimpaired 70-Year Olds. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 983-990.	1.7	18
103	CLN6 disease caused by the same mutation originating in Pakistan has varying pathology. European Journal of Paediatric Neurology, 2013, 17, 657-660.	0.7	17
104	CYLD variants in frontotemporal dementia associated with severe memory impairment in a Portuguese cohort. Brain, 2020, 143, e67-e67.	3.7	16
105	Genetics of synucleins in neurodegenerative diseases. Acta Neuropathologica, 2021, 141, 471-490.	3.9	16
106	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032.	4.9	15
107	Adenosine Deaminase Two and Immunoglobulin M Accurately Differentiate Adult Sneddon's Syndrome of Unknown Cause. Cerebrovascular Diseases, 2018, 46, 257-264.	0.8	15
108	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	1.5	13

#	Article	IF	CITATIONS
109	Action Myoclonus and Seizure in Kuforâ€Rakeb Syndrome. Movement Disorders Clinical Practice, 2018, 5, 195-199.	0.8	13
110	A Phenotype of Atypical Apraxia of Speech in a Family Carrying SQSTM1 Mutation. Journal of Alzheimer's Disease, 2014, 43, 625-630.	1.2	12
111	Screening exons 16 and 17 of the amyloid precursor protein gene in sporadic early-onset Alzheimer's disease. Neurobiology of Aging, 2016, 39, 220.e1-220.e7.	1.5	12
112	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	1.5	12
113	An Aged Canid with Behavioral Deficits Exhibits Blood and Cerebrospinal Fluid Amyloid Beta Oligomers. Frontiers in Aging Neuroscience, 2018, 10, 7.	1.7	12
114	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032-1033.	4.9	11
115	Peripheral GRN mRNA and Serum Progranulin Levels as a Potential Indicator for Both the Presence of Splice Site Mutations and Individuals at Risk for Frontotemporal Dementia. Journal of Alzheimer's Disease, 2019, 67, 159-167.	1.2	11
116	The clinical syndrome of dystonia with anarthria/aphonia. Parkinsonism and Related Disorders, 2016, 24, 20-27.	1.1	10
117	Late-onset and acute presentation of Brown-Vialetto-Van Laere syndrome in a Brazilian family. Neurology: Genetics, 2018, 4, e215.	0.9	10
118	How understudied populations have contributed to our understanding of Alzheimer's disease genetics. Brain, 2021, 144, 1067-1081.	3.7	10
119	<scp>CLN</scp> 8 disease caused by large genomic deletions. Molecular Genetics & amp; Genomic Medicine, 2017, 5, 85-91.	0.6	9
120	A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Molecular Neurodegeneration, 2021, 16, 79.	4.4	9
121	Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain, 2022, 145, 1257-1263.	3.7	9
122	Atypical Parkinsonism-Dystonia Syndrome Caused by a Novel DJ1 Mutation. Movement Disorders Clinical Practice, 2014, 1, 45-49.	0.8	8
123	Disease-related cortical thinning in presymptomatic granulin mutation carriers. Neurolmage: Clinical, 2021, 29, 102540.	1.4	8
124	Genetic variants in glutamate-, $\hat{A^2}\hat{a}^2$, and tau-related pathways determine polygenic risk for Alzheimer's disease. Neurobiology of Aging, 2021, 101, 299.e13-299.e21.	1.5	7
125	Mutations in TYROBP are not a common cause of dementia in a Turkish cohort. Neurobiology of Aging, 2017, 58, 240.e1-240.e3.	1.5	6
126	Genetics of dementia in a Finnish cohort. European Journal of Human Genetics, 2018, 26, 827-837.	1.4	6

#	Article	IF	CITATIONS
127	<i>AP4S1</i> splice-site mutation in a case of spastic paraplegia type 52 with polymicrogyria. Neurology: Genetics, 2018, 4, e273.	0.9	6
128	Genotyping of the Alzheimer's Disease Genome-Wide Association Study Index Single Nucleotide Polymorphisms in the Brains for Dementia Research Cohort. Journal of Alzheimer's Disease, 2018, 64, 355-362.	1.2	6
129	Psychiatric Manifestations of <scp><i>ATP13A2</i></scp> Mutations. Movement Disorders Clinical Practice, 2020, 7, 838-841.	0.8	6
130	Whole-exome sequencing of Finnish patients with vascular cognitive impairment. European Journal of Human Genetics, 2021, 29, 663-671.	1.4	6
131	Genetic analysis reveals novel variants for vascular cognitive impairment. Acta Neurologica Scandinavica, 2022, 146, 42-50.	1.0	6
132	Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells, 2022, 11, 981.	1.8	6
133	A deletion of IDUA exon 10 in a family of Golden Retriever dogs with an attenuated form of mucopolysaccharidosis type I. Journal of Veterinary Internal Medicine, 2020, 34, 1813-1824.	0.6	4
134	Mutations in a Sibship with Multifocal Polymyoclonus. Tremor and Other Hyperkinetic Movements, 2017, 7, 452.	1.1	4
135	Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimer's Research and Therapy, 2022, 14, 10.	3.0	4
136	Genetic Variants and Related Biomarkers in Sporadic Alzheimer's Disease. Current Genetic Medicine Reports, 2015, 3, 19-25.	1.9	3
137	Two pathologically confirmed cases of novel mutations in the MAPT gene causing frontotemporal dementia. Neurobiology of Aging, 2020, 87, 141.e15-141.e20.	1.5	3
138	Patients with progranulin mutations overlap with the progressive dysexecutive syndrome: towards the definition of a frontoparietal dementia phenotype. Brain Communications, 2020, 2, fcaa126.	1.5	3
139	Novel MAG Variant Causes Cerebellar Ataxia with Oculomotor Apraxia: Molecular Basis and Expanded Clinical Phenotype. Journal of Clinical Medicine, 2020, 9, 1212.	1.0	3
140	Vasculitic peripheral neuropathy in deficiency of adenosine deaminase 2. Neuromuscular Disorders, 2021, 31, 891-895.	0.3	2
141	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	1.1	2
142	Exome Sequencing of a Portuguese Cohort of Frontotemporal Dementia Patients: Looking Into the ALS-FTD Continuum. Frontiers in Neurology, 0, 13 , .	1.1	2
143	Ataxia with oculomotor apraxia is associated with the DNA damage repair pathway. Movement Disorders, 2017, 32, 720-720.	2.2	1
144	Rare variants in TP73 in a frontotemporal dementia cohort link this gene with primary progressive aphasia phenotypes. European Journal of Neurology, 2022, , .	1.7	1

#	Article	IF	CITATIONS
145	Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiology of Aging, 2022, , .	1.5	1
146	The <scp>CBlâ€R</scp> detects early behavioural impairment in genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2022, 9, 644-658.	1.7	1
147	P2â€₹58: LINKAGE AND WHOLE GENOME SEQUENCE ANALYSIS OF ALZHEIMER'S DISEASE RESILIENCE AND RISK. Alzheimer's and Dementia, 2016, 12, P675.	0.4	O
148	P3-091: Investigating SARM1 Variants in Alzheimer's Disease Cohorts. , 2016, 12, P855-P855.		0
149	Mouse models of kufor-rakeb disease link Parkinson's disease closer to neuronal ceroid lipofuscinosis, suggesting lysosomal dysfunction as shared mechanism. Movement Disorders, 2017, 32, 209-209.	2.2	O
150	[P3–101]: MULTIâ€INFARCT DEMENTIA OF SWEDISH TYPE IS CAUSED BY 3'UTR <i>COL4A1</i> MUTATION Alzheimer's and Dementia, 2017, 13, P973.	^{l.} 0.4	0
151	[P3–110]: CALCULATING POLYGENIC RISK FOR INDIVIDUALS WITH SPORADIC EARLY ONSET ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P976.	0.4	O
152	[P3â€"111]: NOVEL CANDIDATE GENES FOR DEMENTIA WITH LEWY BODIES. Alzheimer's and Dementia, 2017, 13 P977.	³ 0.4	0
153	[P3–112]: INVESTIGATING GENETIC VARIATION IN ALZHEIMER's DISEASE USING WHOLEâ€EXOME SEQUENCING Alzheimer's and Dementia, 2017, 13, P977.	G _{0.4}	O
154	[F5–01–02]: GENETICS OF DLB AND RELEVANCE FOR MECHANISMS. Alzheimer's and Dementia, 2017, 13, P1444.	0.4	0
155	[P4–416]: GENETIC CHARACTERIZATION OF A TURKISH DEMENTIA COHORT: FOCUS ON ⟨i⟩TYROBP⟨/i⟩. Alzheimer's and Dementia, 2017, 13, P1490.	0.4	O
156	A comprehensive analysis of copy number variation in a Turkish dementia cohort. Human Genomics, 2021, 15, 48.	1.4	0