
Zheng-Rong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526216/publications.pdf Version: 2024-02-01

ZHENC-RONGLU

#	Article	IF	CITATIONS
1	Magnetic resonance molecular imaging of extradomain B fibronectin enables detection of pancreatic ductal adenocarcinoma metastasis. Magnetic Resonance Imaging, 2022, 86, 37-45.	1.8	12
2	Manganese(II) EOB-Pyclen Diacetate for Liver-Specific MRI. ACS Applied Bio Materials, 2022, 5, 451-458.	4.6	11
3	Evaluation of Physicochemical Properties, Pharmacokinetics, Biodistribution, Toxicity, and Contrast-Enhanced Cancer MRI of a Cancer-Targeting Contrast Agent, MT218. Investigative Radiology, 2022, 57, 639-654.	6.2	8
4	Regulating Oncogenic LncRNA DANCR with Targeted ECO/siRNA Nanoparticles for Non-Small Cell Lung Cancer Therapy. ACS Omega, 2022, 7, 22743-22753.	3.5	8
5	Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. Journal of Controlled Release, 2021, 330, 329-340.	9.9	15
6	Environmentâ€Responsive Lipid/siRNA Nanoparticles for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001294.	7.6	19
7	Stimuliâ€Responsive Nanotheranostics. Advanced Healthcare Materials, 2021, 10, e2100243.	7.6	11
8	Peptide Derivatives of Retinylamine Prevent Retinal Degeneration with Minimal Side Effects on Vision in Mice. Bioconjugate Chemistry, 2021, 32, 572-583.	3.6	4
9	Efficacy of Targeted ECO/miR-200c Nanoparticles for Modulating Tumor Microenvironment and Treating Triple Negative Breast Cancer as Non-invasively Monitored by MR Molecular Imaging. Pharmaceutical Research, 2021, 38, 1405-1418.	3.5	21
10	Quantitative analysis of metastatic breast cancer in mice using deep learning on cryo-image data. Scientific Reports, 2021, 11, 17527.	3.3	6
11	Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids. Pharmaceuticals, 2021, 14, 1016.	3.8	4
12	Non-viral Gene Therapy for Stargardt Disease with ECO/pRHO-ABCA4 Self-Assembled Nanoparticles. Molecular Therapy, 2020, 28, 293-303.	8.2	32
13	Noninvasive assessment and therapeutic monitoring of drug-resistant colorectal cancer by MR molecular imaging of extradomain-B fibronectin. Theranostics, 2020, 10, 11127-11143.	10.0	14
14	Improving Radiation Response in Glioblastoma Using ECO/siRNA Nanoparticles Targeting DNA Damage Repair. Cancers, 2020, 12, 3260.	3.7	7
15	Overexpression of Extradomain-B Fibronectin is Associated with Invasion of Breast Cancer Cells. Cells, 2020, 9, 1826.	4.1	24
16	Preclinical Assessment of the Effectiveness of Magnetic Resonance Molecular Imaging of Extradomain-B Fibronectin for Detection and Characterization of Oral Cancer. Molecular Imaging and Biology, 2020, 22, 1532-1542.	2.6	6
17	Magnetic Resonance Molecular Imaging of Extradomain B Fibronectin Improves Imaging of Pancreatic Cancer Tumor Xenografts. Frontiers in Oncology, 2020, 10, 586727.	2.8	14
18	Role of <i>eIF4E</i> on epithelialâ€mesenchymal transition, invasion, and chemoresistance of prostate cancer cells. Cancer Communications, 2020, 40, 126-131.	9.2	4

#	Article	IF	CITATIONS
19	Stable Retinoid Analogue Targeted Dual pH-Sensitive Smart Lipid ECO/ <i>pDNA</i> Nanoparticles for Specific Gene Delivery in the Retinal Pigment Epithelium. ACS Applied Bio Materials, 2020, 3, 3078-3086.	4.6	11
20	Fibronectin in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1245, 85-96.	1.6	6
21	Formulation of Biocompatible Targeted ECO/siRNA Nanoparticles with Long-Term Stability for Clinical Translation of RNAi. Nucleic Acid Therapeutics, 2019, 29, 195-207.	3.6	22
22	Extradomain-B Fibronectin-Targeted Dextran-Based Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Probe for Detecting Pancreatic Cancer. Bioconjugate Chemistry, 2019, 30, 1425-1433.	3.6	25
23	Systemic Delivery of Tumor-Targeting siRNA Nanoparticles against an Oncogenic LncRNA Facilitates Effective Triple-Negative Breast Cancer Therapy. Bioconjugate Chemistry, 2019, 30, 907-919.	3.6	121
24	Effective MR Molecular Imaging of Triple Negative Breast Cancer With an EDB-Fibronectin-Specific Contrast Agent at Reduced Doses. Frontiers in Oncology, 2019, 9, 1351.	2.8	19
25	Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing. Bioconjugate Chemistry, 2019, 30, 667-678.	3.6	30
26	Preparation and Evaluation of ZD2 Peptide ⁶⁴ Cu-DOTA Conjugate as a Positron Emission Tomography Probe for Detection and Characterization of Prostate Cancer. ACS Omega, 2019, 4, 1185-1190.	3.5	7
27	Drug Delivery in Cancer Therapy, Quo Vadis?. Molecular Pharmaceutics, 2018, 15, 3603-3616.	4.6	85
28	Magnetic resonance molecular imaging of metastatic breast cancer by targeting extradomainâ€B fibronectin in the tumor microenvironment. Magnetic Resonance in Medicine, 2018, 79, 3135-3143.	3.0	22
29	New Directions for Drug Delivery in Cancer Therapy. Molecular Pharmaceutics, 2018, 15, 3601-3602.	4.6	7
30	New GABA modulators protect photoreceptor cells from lightâ€induced degeneration in mouse models. FASEB Journal, 2018, 32, 3289-3300.	0.5	14
31	Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases. International Journal of Biomedical Imaging, 2018, 2018, 1-16.	3.9	11
32	Optimization of ZD2 Peptide Targeted Gd(HP-DO3A) for Detection and Risk-Stratification of Prostate Cancer with MRI. ACS Medicinal Chemistry Letters, 2018, 9, 730-735.	2.8	22
33	Targeted Contrast Agent Specific to an Oncoprotein in Tumor Microenvironment with the Potential for Detection and Risk Stratification of Prostate Cancer with MRI. Bioconjugate Chemistry, 2017, 28, 1031-1040.	3.6	43
34	Targeting fibronectin for cancer imaging and therapy. Journal of Materials Chemistry B, 2017, 5, 639-654.	5.8	82
35	Targeted Multifunctional Lipid ECO Plasmid DNA Nanoparticles as Efficient Non-viral Gene Therapy for Leber's Congenital Amaurosis. Molecular Therapy - Nucleic Acids, 2017, 7, 42-52.	5.1	35
36	Targeted gadofullerene for sensitive magnetic resonance imaging and risk-stratification of breast cancer. Nature Communications, 2017, 8, 692.	12.8	64

#	Article	IF	CITATIONS
37	Molecular imaging for precision medicine. Advanced Drug Delivery Reviews, 2017, 113, 1-2.	13.7	6
38	Magnetic resonance molecular imaging for non-invasive precision cancer diagnosis. Current Opinion in Biomedical Engineering, 2017, 3, 67-73.	3.4	11
39	Molecular imaging of the tumor microenvironment. Advanced Drug Delivery Reviews, 2017, 113, 24-48.	13.7	175
40	A novel nonviral gene delivery system for treating Leber's congenital amaurosis. Therapeutic Delivery, 2017, 8, 823-826.	2.2	7
41	Synthesis and Assessment of Peptide Gd–DOTA Conjugates Targeting Extradomain B Fibronectin for Magnetic Resonance Molecular Imaging of Prostate Cancer. Molecular Pharmaceutics, 2017, 14, 3906-3915.	4.6	19
42	Targeted Dual pHâ€5ensitive Lipid ECO/siRNA Selfâ€Assembly Nanoparticles Facilitate In Vivo Cytosolic sielF4E Delivery and Overcome Paclitaxel Resistance in Breast Cancer Therapy. Advanced Healthcare Materials, 2016, 5, 2882-2895.	7.6	38
43	Influence of Molecular Structure on the In Vivo Performance of Flexible Rod Polyrotaxanes. Biomacromolecules, 2016, 17, 2777-2786.	5.4	12
44	A neutral polydisulfide containing Gd(III) DOTA monoamide as a redoxâ€sensitive biodegradable macromolecular MRI contrast agent. Contrast Media and Molecular Imaging, 2016, 11, 32-40.	0.8	11
45	Cancer Therapy: Targeted Dual pH-Sensitive Lipid ECO/siRNA Self-Assembly Nanoparticles Facilitate In Vivo Cytosolic sielF4E Delivery and Overcome Paclitaxel Resistance in Breast Cancer Therapy (Adv.) Tj ETQq1 1 (0.784314	rgB@/Overloc
46	Dynamic Contrast Enhanced MRI Assessing the Antiangiogenic Effect of Silencing HIF-1α with Targeted Multifunctional ECO/siRNA Nanoparticles. Molecular Pharmaceutics, 2016, 13, 2497-2506.	4.6	18
47	Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery. Bioconjugate Chemistry, 2016, 27, 19-35.	3.6	41
48	Targeted Mesoporous Silica Nanoparticles Delivering Arsenic Trioxide with Environment Sensitive Drug Release for Effective Treatment of Triple Negative Breast Cancer. ACS Biomaterials Science and Engineering, 2016, 2, 501-507.	5.2	55
49	A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging. Biomaterials, 2016, 85, 168-179.	11.4	54
50	Chitosan oligosaccharide based Gd-DTPA complex as a potential bimodal magnetic resonance imaging contrast agent. Magnetic Resonance Imaging, 2016, 34, 1-7.	1.8	11
51	Nanomaterials for Treating Ocular Diseases. Methods in Pharmacology and Toxicology, 2016, , 369-388.	0.2	Ο
52	Development of Dendrimer-Based Nanomaterials for Diagnostic and Therapeutic Applications. Methods in Pharmacology and Toxicology, 2016, , 47-63.	0.2	0
53	Manganese-Enhanced MRI for Preclinical Evaluation of Retinal Degeneration Treatments. , 2015, 56, 4936.		13
54	Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging. Diagnostics, 2015, 5, 318-332.	2.6	15

#	Article	IF	CITATIONS
55	Prolonged prevention of retinal degeneration with retinylamine loaded nanoparticles. Biomaterials, 2015, 44, 103-110.	11.4	20
56	Anti-angiogenic Effects of Bumetanide Revealed by DCE-MRI with a Biodegradable Macromolecular Contrast Agent in a Colon Cancer Model. Pharmaceutical Research, 2015, 32, 3029-3043.	3.5	13
57	EDB Fibronectin Specific Peptide for Prostate Cancer Targeting. Bioconjugate Chemistry, 2015, 26, 830-838.	3.6	82
58	Silencing β3 Integrin by Targeted ECO/siRNA Nanoparticles Inhibits EMT and Metastasis of Triple-Negative Breast Cancer. Cancer Research, 2015, 75, 2316-2325.	0.9	135
59	Gd ³⁺ -1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic-2-hydroxypropyl-β-cyclodextrin/Pluronic Polyrotaxane as a Long Circulating High Relaxivity MRI Contrast Agent. ACS Applied Materials & Interfaces, 2015, 7, 22272-22276.	8.0	38
60	Selfâ€Assembly of a Multifunctional Lipid With Core–Shell Dendrimer DNA Nanoparticles Enhanced Efficient Gene Delivery at Low Charge Ratios into RPE Cells. Macromolecular Bioscience, 2015, 15, 1663-1672.	4.1	30
61	MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nature Communications, 2015, 6, 7984.	12.8	215
62	RNA interference targeting hypoxia-inducible factor 1α via a novel multifunctional surfactant attenuates glioma growth in an intracranial mouse model. Journal of Neurosurgery, 2015, 122, 331-341.	1.6	29
63	ECO/siRNA nanoparticles and breast cancer metastasis. Oncoscience, 2015, 2, 823-824.	2.2	0
64	Dendritic nanoglobules with polyhedral oligomeric silsesquioxane core and their biomedical applications. Nanomedicine, 2014, 9, 2387-2401.	3.3	55
65	Multifunctional PEG Retinylamine Conjugate Provides Prolonged Protection against Retinal Degeneration in Mice. Biomacromolecules, 2014, 15, 4570-4578.	5.4	10
66	Synthesis and Evaluation of a Targeted Nanoglobular Dual-Modal Imaging Agent for MR Imaging and Image-Guided Surgery of Prostate Cancer. Pharmaceutical Research, 2014, 31, 1469-1476.	3.5	15
67	The Polyamine Catabolic Enzyme SAT1 Modulates Tumorigenesis and Radiation Response in GBM. Cancer Research, 2014, 74, 6925-6934.	0.9	48
68	Synthesis and Evaluation of a Nanoglobular Dendrimer 5-Aminosalicylic Acid Conjugate with a Hydrolyzable Schiff Base Spacer for Treating Retinal Degeneration. ACS Nano, 2014, 8, 153-161.	14.6	25
69	Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release. Molecular Pharmaceutics, 2014, 11, 2734-2744.	4.6	145
70	Theranostics: Fusion of Therapeutics and Diagnostics. Pharmaceutical Research, 2014, 31, 1355-1357.	3.5	18
71	Biodegradable iodinated polydisulfides as contrast agents for CT angiography. Biomaterials, 2014, 35, 5822-5829.	11.4	30
72	Peptide targeted high-resolution molecular imaging of prostate cancer with MRI. American Journal of Nuclear Medicine and Molecular Imaging, 2014, 4, 525-36.	1.0	13

#	Article	IF	CITATIONS
73	Molecular Magnetic Resonance Imaging of Tumors with a PTPµ Targeted Contrast Agent. Translational Oncology, 2013, 6, 329-337.	3.7	13
74	Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. Journal of Controlled Release, 2013, 171, 296-307.	9.9	87
75	Synthesis and evaluation of a polydisulfide with Gd–DOTA monoamide side chains as a biodegradable macromolecular contrast agent for MR blood pool imaging. Contrast Media and Molecular Imaging, 2013, 8, 220-228.	0.8	23
76	Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu. International Journal of Cancer, 2013, 132, 1624-1632.	5.1	19
77	Gadoliniumâ€based contrast agents for magnetic resonance cancer imaging . Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 1-18.	6.1	290
78	Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials, 2013, 34, 7683-7693.	11.4	67
79	Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 190-190.	6.1	7
80	Molecular MRI of Liver Fibrosis by a Peptide-Targeted Contrast Agent in an Experimental Mouse Model. Investigative Radiology, 2013, 48, 46-54.	6.2	23
81	Molecular MRI of atherosclerotic plaque progression in an ApoE(-/-) mouse model with a CLT1 peptide targeted macrocyclic Gd(III) chelate. American Journal of Nuclear Medicine and Molecular Imaging, 2013, 3, 446-55.	1.0	6
82	Synthesis and Evaluation of a Peptide Targeted Small Molecular Gd-DOTA Monoamide Conjugate for MR Molecular Imaging of Prostate Cancer. Bioconjugate Chemistry, 2012, 23, 1548-1556.	3.6	29
83	Intracellular siRNA delivery with novel spermine based surfactants. Science Bulletin, 2012, 57, 3979-3984.	1.7	6
84	Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles. International Journal of Nanomedicine, 2012, 7, 5205.	6.7	16
85	Polydisulfide manganese(II) complexes as nonâ€gadolinium biodegradable macromolecular MRI contrast agents. Journal of Magnetic Resonance Imaging, 2012, 35, 737-744.	3.4	18
86	MR Molecular Imaging of Prostate Cancer with a Peptide-Targeted Contrast Agent in a Mouse Orthotopic Prostate Cancer Model. Pharmaceutical Research, 2012, 29, 953-960.	3.5	44
87	Synthesis and Evaluation of Nanoglobular Macrocyclic Mn(II) Chelate Conjugates as Non-Gadolinium(III) MRI Contrast Agents. Bioconjugate Chemistry, 2011, 22, 931-937.	3.6	63
88	Integrin Targeted MR Imaging. Theranostics, 2011, 1, 83-101.	10.0	45
89	Ocular Pharmacokinetic Study Using T1 Mapping and Gd-Chelate- Labeled Polymers. Pharmaceutical Research, 2011, 28, 3180-3188.	3.5	7
90	Design, synthesis and evaluation of spermine-based pH-sensitive amphiphilic gene delivery systems: Multifunctional non-viral gene carriers. Science China Chemistry, 2011, 54, 359-368.	8.2	14

#	Article	IF	CITATIONS
91	Evaluation of CLT1-(Gd-DTPA) for Cancer MR Molecular Imaging in a Mouse Breast Cancer Model. Bopuxue Zazhi, 2011, 2, 325-330.	1.0	4
92	Molecular imaging of HPMA copolymers: Visualizing drug delivery in cell, mouse and manâ~†. Advanced Drug Delivery Reviews, 2010, 62, 246-257.	13.7	62
93	Polydisulfideâ€based Biodegradable Macromolecular Magnetic Resonance Imaging Contrast Agents. Israel Journal of Chemistry, 2010, 50, 220-232.	2.3	22
94	Stability and Biodistribution of a Biodegradable Macromolecular MRI Contrast Agent Gd-DTPA Cystamine Copolymers (GDCC) in Rats. Pharmaceutical Research, 2010, 27, 1390-1397.	3.5	20
95	Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography. International Journal of Nanomedicine, 2010, 5, 707.	6.7	10
96	Noninvasive Evaluation of Antiangiogenic Effect in a Mouse Tumor Model by DCE-MRI with Gd-DTPA Cystamine Copolymers. Molecular Pharmaceutics, 2010, 7, 41-48.	4.6	25
97	New Amphiphilic Carriers Forming pH-Sensitive Nanoparticles for Nucleic Acid Delivery. Langmuir, 2010, 26, 13874-13882.	3.5	24
98	An Effective Targeted Nanoglobular Manganese(II) Chelate Conjugate for Magnetic Resonance Molecular Imaging of Tumor Extracellular Matrix. Molecular Pharmaceutics, 2010, 7, 936-943.	4.6	37
99	Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging. Biomacromolecules, 2010, 11, 754-761.	5.4	80
100	A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery. Journal of Controlled Release, 2009, 134, 207-213.	9.9	73
101	Application of a biodegradable macromolecular contrast agent in dynamic contrastâ€enhanced MRI for assessing the efficacy of indocyanine greenâ€enhanced photothermal cancer therapy. Journal of Magnetic Resonance Imaging, 2009, 30, 401-406.	3.4	5
102	Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials, 2009, 30, 5660-5666.	11.4	179
103	Tumor Characterization with Dynamic Contrast Enhanced Magnetic Resonance Imaging and Biodegradable Macromolecular Contrast Agents in Mice. Pharmaceutical Research, 2009, 26, 2202-2208.	3.5	18
104	Structural effect on degradability and in vivo contrast enhancement of polydisulfide Gd(III) complexes as biodegradable macromolecular MRI contrast agents. Magnetic Resonance Imaging, 2009, 27, 503-511.	1.8	24
105	Targeted Systemic Delivery of a Therapeutic siRNA with a Multifunctional Carrier Controls Tumor Proliferation in Mice. Molecular Pharmaceutics, 2009, 6, 738-746.	4.6	111
106	A multifunctional and reversibly polymerizable carrier for efficient siRNA delivery. Biomaterials, 2008, 29, 15-22.	11.4	66
107	Contrast-Enhanced MRI-Guided Photodynamic Cancer Therapy with a Pegylated Bifunctional Polymer Conjugate. Pharmaceutical Research, 2008, 25, 2002-2011.	3.5	52
108	Characterization of tumor angiogenesis with dynamic contrastâ€enhanced MRI and biodegradable macromolecular contrast agents in mice. Magnetic Resonance in Medicine, 2008, 60, 1347-1352.	3.0	32

#	Article	IF	CITATIONS
109	Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 201-207.	3.3	46
110	A Peptide Targeted Contrast Agent Specific to Fibrin-Fibronectin Complexes for Cancer Molecular Imaging with MRI. Bioconjugate Chemistry, 2008, 19, 2300-2303.	3.6	85
111	Synthesis and Evaluation of Globular Gd-DOTA-Monoamide Conjugates with Precisely Controlled Nanosizes for Magnetic Resonance Angiography. Biomacromolecules, 2008, 9, 2742-2748.	5.4	57
112	Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential. Expert Opinion on Drug Delivery, 2007, 4, 149-164.	5.0	63
113	Synthesis, Characterization, and Gene Delivery of Poly- <scp>l</scp> -lysine Octa(3-aminopropyl)silsesquioxane Dendrimers: Nanoglobular Drug Carriers with Precisely Defined Molecular Architectures. Molecular Pharmaceutics, 2007, 4, 759-768.	4.6	120
114	Novel Polymerizable Surfactants with pH-Sensitive Amphiphilicity and Cell Membrane Disruption for Efficient siRNA Delivery. Bioconjugate Chemistry, 2007, 18, 2169-2177.	3.6	95
115	<i>In Vivo</i> Evaluation of a PAMAM-Cystamine-(Gd-DO3A) Conjugate as a Biodegradable Macromolecular MRI Contrast Agent. Experimental Biology and Medicine, 2007, 232, 1081-1089.	2.4	68
116	Modification of Gd-DTPA cystine copolymers with PEG-1000 optimizes pharmacokinetics and tissue retention for magnetic resonance angiography. Magnetic Resonance in Medicine, 2007, 58, 110-118.	3.0	19
117	Biodistribution and pharmacokinetics of colon-specific HPMA copolymer–9-aminocamptothecin conjugate in mice. Journal of Controlled Release, 2007, 117, 179-185.	9.9	32
118	A novel environment-sensitive biodegradable polydisulfide with protonatable pendants for nucleic acid delivery. Journal of Controlled Release, 2007, 120, 250-258.	9.9	48
119	Polymer platforms for drug delivery and biomedical imaging. Journal of Controlled Release, 2007, 122, 269-277.	9.9	57
120	Conjugation of poorly absorptive drugs with mucoadhesive polymers for the improvement of oral absorption of drugs. Journal of Controlled Release, 2007, 123, 195-202.	9.9	22
121	Noninvasive Visualization of Pharmacokinetics, Biodistribution and Tumor Targeting of Poly[N-(2-hydroxypropyl)methacrylamide] in Mice Using Contrast Enhanced MRI. Pharmaceutical Research, 2007, 24, 1208-1216.	3.5	50
122	Application of Biomedical Imaging in Drug Discovery and Development. Pharmaceutical Research, 2007, 24, 1170-1171.	3.5	5
123	RGD targeted poly(L-glutamic acid)-cystamine-(Gd-DO3A) conjugate for detecting angiogenesis biomarker alpha(v) beta3 integrin with MRT, mapping. International Journal of Nanomedicine, 2007, 2, 191-9.	6.7	38
124	What Can You See with Imaging in Pharmaceutical Research?. Molecular Pharmaceutics, 2006, 3, 471-471.	4.6	3
125	Noninvasive Visualization of in Vivo Drug Delivery of Poly(l-glutamic acid) Using Contrast-Enhanced MRI. Molecular Pharmaceutics, 2006, 3, 507-515.	4.6	57
126	Contrast-Enhanced Magnetic Resonance Angiography with Biodegradable (Gd-DTPA)-Cystamine Copolymers:  Comparison with MS-325 in a Swine Model. Molecular Pharmaceutics, 2006, 3, 558-565.	4.6	6

#	Article	IF	CITATIONS
127	Biodegradable cystamine spacer facilitates the clearance of Gd(III) chelates in poly(glutamic acid) Gd-DO3A conjugates for contrast-enhanced MR imaging. Magnetic Resonance Imaging, 2006, 24, 931-940.	1.8	41
128	Gd-DTPA l-Cystine Bisamide Copolymers as Novel Biodegradable Macromolecular Contrast Agents for MR Blood Pool Imaging. Pharmaceutical Research, 2006, 23, 1285-1294.	3.5	25
129	Pharmacokinetics, Biodistribution and Contrast Enhanced MR Blood Pool Imaging of Gd-DTPA Cystine Copolymers and Gd-DTPA Cystine Diethyl Ester Copolymers in a Rat Model. Pharmaceutical Research, 2006, 23, 1736-1742.	3.5	44
130	Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. Journal of Controlled Release, 2006, 110, 323-331.	9.9	63
131	Effect of size and charge on pharmacokinetics and in vivo MRI contrast enhancement of biodegradable polydisulfide Gd(III) complexes. Journal of Controlled Release, 2006, 112, 350-356.	9.9	40
132	Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magnetic Resonance in Medicine, 2006, 56, 761-767.	3.0	44
133	Polydisulfide Gd(III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents. International Journal of Nanomedicine, 2006, 1, 31-40.	6.7	46
134	Contrast-enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor-bearing mice. Magnetic Resonance in Medicine, 2005, 53, 835-842.	3.0	54
135	Pharmacokinetics and Tissue Retention of (Gd-DTPA)-Cystamine Copolymers, a Biodegradable Macromolecular Magnetic Resonance Imaging Contrast Agent. Pharmaceutical Research, 2005, 22, 596-602.	3.5	44
136	PEG-g-poly(GdDTPA-co-l-cystine):Â Effect of PEG Chain Length on in Vivo Contrast Enhancement in MRI. Biomacromolecules, 2005, 6, 2305-2311.	5.4	45
137	Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magnetic Resonance in Medicine, 2004, 51, 27-34.	3.0	63
138	PEG-g-poly(GdDTPA-co-l-cystine):  A Biodegradable Macromolecular Blood Pool Contrast Agent for MR Imaging. Bioconjugate Chemistry, 2004, 15, 1424-1430.	3.6	69
139	Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab′ Fragment. Macromolecular Bioscience, 2003, 3, 296-300.	4.1	109
140	Poly(l-glutamic acid) Gd(III)-DOTA Conjugate with a Degradable Spacer for Magnetic Resonance Imaging. Bioconjugate Chemistry, 2003, 14, 715-719.	3.6	95
141	N-(2-Hydroxypropyl)methacrylamide Copolymer-9-Aminocamptothecin Conjugate: Colon-Specific Drug Delivery in Rats. Journal of Bioactive and Compatible Polymers, 2002, 17, 305-319.	2.1	15
142	Design of novel bioconjugates for targeted drug delivery. Journal of Controlled Release, 2002, 78, 165-173.	9.9	99
143	Influence of the structure of drug moieties on the in vitro efficacy of HPMA copolymer-geldanamycin derivative conjugates. Pharmaceutical Research, 2002, 19, 115-123.	3.5	29
144	Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharmaceutical Research, 2002, 19, 396-402.	3.5	156

#	Article	IF	CITATIONS
145	Modification of Cyclosporin A and Conjugation of Its Derivative to HPMA Copolymers. Bioconjugate Chemistry, 2001, 12, 129-133.	3.6	16
146	Improved synthesis and evaluation of 17-substituted aminoalkylgeldanamycin derivatives applicable to drug delivery systems. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2089-2091.	2.2	26
147	Water-soluble HPMA copolymer–wortmannin conjugate retains phosphoinositide 3-kinase inhibitory activity in vitro and in vivo. Journal of Controlled Release, 2001, 74, 275-281.	9.9	29
148	Biorecognizable HPMA copolymer–drug conjugates for colon-specific delivery of 9-aminocamptothecin. Journal of Controlled Release, 2001, 75, 365-379.	9.9	76
149	Synthesis of Bioadhesive Lectin-HPMA Copolymerâ^'Cyclosporin Conjugates. Bioconjugate Chemistry, 2000, 11, 3-7.	3.6	30
150	Polymerizable Fab′ antibody fragments for targeting of anticancer drugs. Nature Biotechnology, 1999, 17, 1101-1104.	17.5	116
151	Synthesis of semitelechelic poly[N-(2-hydroxypropyl)methacryl-amide] by radical polymerization in the presence of alkyl mercaptans. Macromolecular Chemistry and Physics, 1999, 200, 2022-2030.	2.2	15
152	Functionalized Semitelechelic Poly[N-(2-hydroxypropyl)methacrylamide] for Protein Modification. Bioconjugate Chemistry, 1998, 9, 793-804.	3.6	57
153	Alkyl Derivatives of Europium(+2) and Ytterbium(+2). Crystal Structures of Eu[C(SiMe3)3]2, Yb[C(SiMe3)2(SiMe2CHCH2)]I·OEt2and Yb[C(SiMe3)2(SiMe2OMe)]I·OEt2. Organometallics, 1996, 15, 4783-4790.	2.3	114
154	Novel Chelated Diorganolithate Ion [CH2SiMe2C(SiMe3)2LiC(SiMe3)2SiMe2CH2]-and Highly Crowded Chelated Organomercury Compound [CH2SiMe2C(SiMe3)2HgC(SiMe3)2SiMe2CH2]. Organometallics, 1996, 15, 1651-1655.	2.3	33
155	Iodo(methoxydimethylsilyl)bis(trimethylsilyl)methane: a reagent for the preparation of novel Chemistry, 1996, 521, 113-120.	1.8	21
156	Synthesis and characterization of (4S)-1-chloroalkylsilatrane-4-carboxylic acids; cruytal structures of (3R,4S)-1-chloromethyl-3-methylsilatrane-4-carboxylic acid and (3R,4S)-1-(3-chloropropyl)-3-methylsilatrane-4-carboxylic acid. Journal of Organometallic Chemistry, 1995, 489, C38-C43.	1.8	4
157	Synthesis and characterization of (4S)-silatrane-4-carboxylic acids; molecular structure of (3R,4S)-1-vinyl-3-methylsilatrane-4-carboxylic acid. Journal of Organometallic Chemistry, 1993, 446, 107-112.	1.8	11
158	Oxidation of alkene with t-butyl hydroperoxide catalysed by copper(II) complexes of tris(2-benzimidazolylmethyl)amine: Model complexes of blue copper proteins. Journal of Molecular Catalysis, 1991, 70, 391-397.	1.2	12