Shiburaj Sugathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526153/publications.pdf

Version: 2024-02-01

1040056 1058476 31 246 9 14 citations h-index g-index papers 36 36 36 302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical composition and antibacterial activity of the rhizome oil of Hedychium larsenii. Acta Pharmaceutica, 2005, 55, 315-20.	2.0	23
2	Antibacterial effects of Coscinium fenestratum. Fìtoterapìâ, 2005, 76, 585-587.	2.2	22
3	Chemical Constituents and Antibacterial Activity of the Leaf Oil of (i) Cinnamomum chemungianum (i) Mohan et Henry. Journal of Essential Oil Research, 2007, 19, 98-100.	2.7	21
4	Functional characterization of a small heat shock protein from Mycobacterium leprae. BMC Microbiology, 2008, 8, 208.	3.3	20
5	A S52P mutation in the â€î±â€crystallin domain' of <i><scp>M</scp>ycobacteriumÂleprae </i> <scp>HSP</scp> 18 reduces its oligomeric size and chaperone function. FEBS Journal, 2013, 280, 5994-6009.	4.7	19
6	Fukugiside, a biflavonoid from Garcinia travancorica inhibits biofilm formation of Streptococcus pyogenes and its associated virulence factors. Journal of Medical Microbiology, 2018, 67, 1391-1401.	1.8	14
7	Evaluation of antibiofilm potential of four-domain α-amylase from Streptomyces griseus against exopolysaccharides (EPS) of bacterial pathogens using Danio rerio. Archives of Microbiology, 2022, 204, 243.	2.2	13
8	Antimicrobial activity of Amomum cannicarpum. Fìtoterapìâ, 2003, 74, 476-478.	2.2	12
9	Characterization and phylogenetic analysis of cellulase producing Streptomyces noboritoensis SPKC1. Interdisciplinary Sciences, Computational Life Sciences, 2010, 2, 205-212.	3.6	11
10	Chemical Composition and Antimicrobial Activity of the Leaf Oil of <i> Amomum cannicarpum </i> (Wight) Bentham ex Baker. Journal of Essential Oil Research, 2006, 18, 35-37.	2.7	9
11	Volatile Constituents and Antibacterial Activity of the Flower Oil ofEvodia lunu-ankenda(Gaertn) Merr Journal of Essential Oil Research, 2006, 18, 462-464.	2.7	9
12	Cloning, expression, homology modelling and molecular dynamics simulation of four domain-containing l±-amylase from Streptomyces griseus. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2152-2163.	3.5	9
13	Chemical composition and antimicrobial activity of essential oil from the rhizomes of Amomum cannicarpum. Fìtoterapìâ, 2006, 77, 392-394.	2.2	7
14	Enzyme Technology in Food Processing: Recent Developments and Future Prospects., 2021,, 191-215.		7
15	Cellular adaptation responses in a halotolerant Exiguobacterium exhibiting organic solvent tolerance with simultaneous protease production. Environmental Technology and Innovation, 2021, 23, 101803.	6.1	7
16	Chemical composition and FtsZ GTPase inhibiting activity of the essential oil of <i>Piper sarmentosum</i> from Andaman Islands, India. Journal of Essential Oil Research, 2017, 29, 430-435.	2.7	6
17	Chemical Constituents and Antimicrobial Activity of the Leaf Oil of (i>Cinnamomum filipedicellatum (i>Kosterm Journal of Essential Oil Research, 2006, 18, 234-236.	2.7	5
18	Amylases for Food Applicationsâ€"Updated Information. Energy, Environment, and Sustainability, 2019, , 199-227.	1.0	5

#	Article	IF	CITATIONS
19	A highly divergent α-amylase from Streptomyces spp.: An evolutionary perspective. International Journal of Biological Macromolecules, 2020, 163, 2415-2428.	7. 5	5
20	High-Throughput and In Silico Screening in Drug Discovery. , 2017, , 247-273.		5
21	Bioresources and Bioprocess in Biotechnology. , 2017, , .		4
22	Microbial Repositories in Bioprospecting. , 2017, , 397-420.		2
23	Antimicrobial Agents from Plants. , 2017, , 271-290.		2
24	Anti-microbial Screening of Streptosporangium nondiastaticum TBG-75A20, Isolated from the Forest Soil of South India. Research Journal of Microbiology, 2011, 6, 912-918.	0.2	2
25	Genome Sequence Analysis of <i>Exiguobacterium</i> sp. Strain TBG-PICH-001, Isolated from Pichavaram Mangrove Forest in South India. Microbiology Resource Announcements, 2022, 11, e0009622.	0.6	2
26	Meliola gamsii sp. nov. (Ascomycetes, Meliolales) from Kerala, India. Nova Hedwigia, 2002, 74, 411-413.	0.4	1
27	Phylogenetic Analysis of Few Actinobacteria with Potential Antimicrobial Properties, Isolated from the Forest Soils of Western Ghats of Kerala. , 2012, , 159-167.		1
28	Bioresources and Bioprocess in Biotechnology. , 2017, , .		1
29	As terina gordoniae sp. nov. (Asterinaceae), a new foliar mycobiont from Kerala, India . Phytotaxa, 2020, 441, 211-216.	0.3	1
30	Evaluation of phylloplane fungal flora and host plants in the Southern Western Ghats., 2021,, 17-81.		0
31	Enzymes as Molecular Tools. , 2017, , 99-128.		O