
Leemor Joshua-Tor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1526140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developmental roles and molecular mechanisms of Asterix/GTSF1. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1716.	3.2	6
2	OCA-T1 and OCA-T2 are coactivators of POU2F3 in the tuft cell lineage. Nature, 2022, 607, 169-175.	13.7	35
3	Asterix/Gtsf1 links tRNAs and piRNA silencing of retrotransposons. Cell Reports, 2021, 34, 108914.	2.9	12
4	Evolution of DNA replication origin specification and gene silencing mechanisms. Nature Communications, 2020, 11, 5175.	5.8	16
5	SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerging Microbes and Infections, 2020, 9, 2091-2093.	3.0	109
6	The dynamic nature of the human origin recognition complex revealed through five cryoEM structures. ELife, 2020, 9, .	2.8	20
7	ELTA: Enzymatic Labeling of Terminal ADP-Ribose. Molecular Cell, 2019, 73, 845-856.e5.	4.5	52
8	High-resolution cryo-EM structures of outbreak strain human norovirus shells reveal size variations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12828-12832.	3.3	53
9	Decoding the 5′ nucleotide bias of PIWI-interacting RNAs. Nature Communications, 2019, 10, 828.	5.8	51
10	FUS Regulates Activity of MicroRNA-Mediated Gene Silencing. Molecular Cell, 2018, 69, 787-801.e8.	4.5	76
11	Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2696-E2705.	3.3	34
12	Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nature Communications, 2018, 9, 283.	5.8	39
13	A structural view of the initiators for chromosome replication. Current Opinion in Structural Biology, 2018, 53, 131-139.	2.6	13
14	Multivalent Recruitment of Human Argonaute by GW182. Molecular Cell, 2017, 67, 646-658.e3.	4.5	81
15	Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis. Nature Structural and Molecular Biology, 2017, 24, 658-665.	3.6	44
16	siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Research, 2017, 45, 3528-3536.	6.5	59
17	Rapid generation of drug-resistance alleles at endogenous loci using CRISPR-Cas9 indel mutagenesis. PLoS ONE, 2017, 12, e0172177.	1.1	25
18	Structure of the active form of human origin recognition complex and its ATPase motor module. ELife, 2017, 6, .	2.8	44

#	Article	IF	CITATIONS
19	From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nature Structural and Molecular Biology, 2015, 22, 20-28.	3.6	219
20	On-Enzyme Refolding Permits Small RNA and tRNA Surveillance by the CCA-Adding Enzyme. Cell, 2015, 160, 644-658.	13.5	61
21	PTEN Functions by Recruitment to Cytoplasmic Vesicles. Molecular Cell, 2015, 58, 255-268.	4.5	89
22	NSD3-Short Is an Adaptor Protein that Couples BRD4 to the CHD8 Chromatin Remodeler. Molecular Cell, 2015, 60, 847-859.	4.5	137
23	Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway. Nature, 2014, 514, 252-256.	13.7	110
24	Dynamic look at DNA unwinding by a replicative helicase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E827-35.	3.3	60
25	CRL4-like Clr4 complex in <i>Schizosaccharomyces pombe</i> depends on an exposed surface of Dos1 for heterochromatin silencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1795-1800.	3.3	21
26	The Making of a Slicer: Activation of Human Argonaute-1. Cell Reports, 2013, 3, 1901-1909.	2.9	129
27	Eukaryotic Argonautes come into focus. Trends in Biochemical Sciences, 2013, 38, 263-271.	3.7	96
28	Chd5 Requires PHD-Mediated Histone 3 Binding for Tumor Suppression. Cell Reports, 2013, 3, 92-102.	2.9	47
29	The Gal3p transducer of the <i>GAL</i> regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes and Development, 2012, 26, 294-303.	2.7	42
30	The Structure of Human Argonaute-2 in Complex with miR-20a. Cell, 2012, 150, 100-110.	13.5	517
31	The Structure of Human Argonaute-2 in Complex with miR-20a. Cell, 2012, 150, 233.	13.5	4
32	A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes and Development, 2012, 26, 2392-2407.	2.7	375
33	The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature, 2012, 491, 279-283.	13.7	276
34	Ancestral Roles of Small RNAs: An Ago-Centric Perspective. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003772-a003772.	2.3	75
35	The Chp1–Tas3 core is a multifunctional platform critical for gene silencing by RITS. Nature Structural and Molecular Biology, 2011, 18, 1351-1357.	3.6	38
36	Argonaute MID domain takes centre stage. EMBO Reports, 2010, 11, 564-565.	2.0	18

#	Article	IF	CITATIONS
37	High-Affinity Binding of Chp1 Chromodomain to K9 Methylated Histone H3 Is Required to Establish Centromeric Heterochromatin. Molecular Cell, 2009, 34, 36-46.	4.5	103
38	On helicases and other motor proteins. Current Opinion in Structural Biology, 2008, 18, 243-257.	2.6	189
39	NADP Regulates the Yeast <i>GAL</i> Induction System. Science, 2008, 319, 1090-1092.	6.0	47
40	Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure. Biochemical Journal, 2007, 401, 421-428.	1.7	11
41	Argonautes confront new small RNAs. Current Opinion in Chemical Biology, 2007, 11, 569-577.	2.8	89
42	Slicer and the Argonautes. Nature Chemical Biology, 2007, 3, 36-43.	3.9	410
43	Strategies for protein coexpression in Escherichia coli. Nature Methods, 2006, 3, 55-64.	9.0	207
44	Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell, 2006, 127, 747-757.	13.5	576
45	Mechanism of DNA translocation in a replicative hexameric helicase. Nature, 2006, 442, 270-275.	13.7	472
46	Argonaute and RNA — getting into the groove. Current Opinion in Structural Biology, 2006, 16, 5-11.	2.6	63
47	Argonaute Slicing Is Required for Heterochromatic Silencing and Spreading. Science, 2006, 313, 1134-1137.	6.0	182
48	The Argonautes. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 67-72.	2.0	54
49	Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Structural and Molecular Biology, 2005, 12, 340-349.	3.6	658
50	Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell, 2005, 122, 183-193.	13.5	289
51	Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell, 2005, 122, 485.	13.5	1
52	The DNA-binding Domain of Human Papillomavirus Type 18 E1. Journal of Biological Chemistry, 2004, 279, 3733-3742.	1.6	27
53	siRNAs at RISC. Structure, 2004, 12, 1120-1122.	1.6	5
54	Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science, 2004, 305, 1437-1441.	6.0	2,370

#	Article	IF	CITATIONS
55	Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. Science, 2004, 305, 1434-1437.	6.0	1,283
56	The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Structural and Molecular Biology, 2003, 10, 1026-1032.	3.6	487
57	Engineering Photocycle Dynamics. Journal of Biological Chemistry, 2002, 277, 6463-6468.	1.6	12
58	Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex. EMBO Journal, 2002, 21, 1487-1496.	3.5	68
59	Noncysteinyl Coordination to the [4Fe-4S]2+Cluster of the DNA Repair Adenine Glycosylase MutY Introduced via Site-Directed Mutagenesis. Structural Characterization of an Unusual Histidinyl-Coordinated Clusterâ€,â€j. Biochemistry, 2002, 41, 3931-3942.	1.2	37
60	Structure of the photoactive yellow protein reconstituted with caffeic acid at 1.16â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 585-590.	2.5	13
61	Selective chemical inactivation of AAA proteins reveals distinct functions of proteasomal ATPases. Chemistry and Biology, 2001, 8, 941-950.	6.2	14
62	Crystal Structure of the DNA Binding Domain of the Replication Initiation Protein E1 from Papillomavirus. Molecular Cell, 2000, 6, 149-158.	4.5	80
63	Crystal Structure of Carboxypeptidase A Complexed with d-Cysteine at 1.75 Ã â^ Inhibitor-Induced Conformational Changes,. Biochemistry, 2000, 39, 10082-10089.	1.2	27
64	Conformational substates in different crystal forms of the photoactive yellow protein—Correlation with theoretical and experimental flexibility. Protein Science, 2000, 9, 64-72.	3.1	31
65	Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus. Molecular Cell, 2000, 6, 149-58.	4.5	47
66	A structural snapshot of base-pair opening in DNA. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11809-11814.	3.3	33
67	Crystal structure of human bleomycin hydrolase, a self-compartmentalizing cysteine protease. Structure, 1999, 7, 619-627.	1.6	62
68	Crystal structure of apaf-1 caspase recruitment domain: an α-helical greek key fold for apoptotic signaling 1 1Edited by D. C. Rees. Journal of Molecular Biology, 1999, 293, 439-447.	2.0	80
69	The Unusual Active Site of Gal6/Bleomycin Hydrolase Can Act as a Carboxypeptidase, Aminopeptidase, and Peptide Ligase. Cell, 1998, 93, 103-109.	13.5	56
70	Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. Journal of Molecular Biology, 1998, 280, 669-685.	2.0	152
71	Essential Dynamics from NMR Clusters: Dynamic Properties of the Myb DNA-Binding Domain and a Hinge-Bending Enhancing Variant. Methods, 1998, 14, 318-328.	1.9	30
72	Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science, 1995, 269, 945-950.	6.0	135

#	Article	IF	CITATIONS
73	The coming of age of DMA crystallography. Current Opinion in Structural Biology, 1993, 3, 323-335.	2.6	18
74	A Structural Model For Sequence-Specific Proflavin-DNA Interactions DuringIn VitroFrameshift Mutagenesis. Journal of Biomolecular Structure and Dynamics, 1992, 10, 317-331.	2.0	7
75	Three-dimensional structures of bulge-containing DNA fragments. Journal of Molecular Biology, 1992, 225, 397-431.	2.0	94
76	Xâ€ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium pyrococcus furiosus. Protein Science, 1992, 1, 1494-1507.	3.1	238
77	Comparison of the Xâ€ray structure of native rubredoxin from pyrococcus furiosus with the NMR structure of the zincâ€substituted protein. Protein Science, 1992, 1, 1522-1525.	3.1	47
78	The three-dimensional structure of a DNA duplex containing looped-out bases. Nature, 1988, 334, 82-84.	13.7	103
79	Target binding triggers hierarchical phosphorylation of human Argonaute-2 to promote target release. ELife, 0, 11, .	2.8	11