
David Strutt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1525976/publications.pdf Version: 2024-02-01

ΠΛΛΙΟ ΣΤΡΙΙΤΤ

#	Article	IF	CITATIONS
1	Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction–Associated Polarity Proteins. Methods in Molecular Biology, 2022, 2438, 1-30.	0.9	4
2	Selective function of the PDZ domain of Dishevelled in noncanonical Wnt signalling. Journal of Cell Science, 2022, 135, .	2.0	3
3	How do the Fat–Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours?. Open Biology, 2021, 11, 200356.	3.6	26
4	QuantifyPolarity, a new tool-kit for measuring planar polarized protein distributions and cell properties in developing tissues. Development (Cambridge), 2021, 148, .	2.5	11
5	DAnkrd49 and Bdbt act via Casein kinase lε to regulate planar polarity in Drosophila. PLoS Genetics, 2020, 16, e1008820.	3.5	4
6	Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochemical Society Transactions, 2020, 48, 1297-1308.	3.4	30
7	Experimental and Theoretical Evidence for Bidirectional Signaling via Core Planar Polarity Protein Complexes in Drosophila. IScience, 2019, 17, 49-66.	4.1	5
8	Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Current Biology, 2019, 29, 3323-3330.e8.	3.9	33
9	Retromer Controls Planar Polarity Protein Levels and Asymmetric Localization at Intercellular Junctions. Current Biology, 2019, 29, 484-491.e6.	3.9	16
10	A theoretical framework for planar polarity establishment through interpretation of graded cues by molecular bridges. Development (Cambridge), 2019, 146, .	2.5	13
11	Robust Wnt signaling is maintained by a Wg protein gradient and Fz2 receptor activity in the developing <i>Drosophila</i> wing. Development (Cambridge), 2019, 146, .	2.5	51
12	Reciprocal action of Casein Kinase lε on core planar polarity proteins regulates clustering and asymmetric localisation. ELife, 2019, 8, .	6.0	24
13	Rapid Disruption of Dishevelled Activity Uncovers an Intercellular Role in Maintenance of Prickle in Core Planar Polarity Protein Complexes. Cell Reports, 2018, 25, 1415-1424.e6.	6.4	7
14	A Dual Function for Prickle in Regulating Frizzled Stability during Feedback-Dependent Amplification of Planar Polarity. Current Biology, 2017, 27, 2784-2797.e3.	3.9	33
15	Integrating planar polarity and tissue mechanics in computational models of epithelial morphogenesis. Current Opinion in Systems Biology, 2017, 5, 41-49.	2.6	5
16	Robust Asymmetric Localization of Planar Polarity Proteins Is Associated with Organization into Signalosome-like Domains of Variable Stoichiometry. Cell Reports, 2016, 17, 2660-2671.	6.4	48
17	Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration. Handbook of Experimental Pharmacology, 2016, 234, 249-274.	1.8	9
18	Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of <i>Drosophila</i> . Biology Open, 2016, 5, 397-408.	1.2	7

DAVID STRUTT

#	Article	IF	CITATIONS
19	Planar Polarity: Forcing Cells Into Line. Current Biology, 2015, 25, R1032-R1034.	3.9	1
20	Conservation of Planar Polarity Pathway Function Across the Animal Kingdom. Annual Review of Genetics, 2015, 49, 529-551.	7.6	55
21	Cellular interpretation of the long-range gradient of Four-jointed activity in the Drosophila wing. ELife, 2015, 4, .	6.0	49
22	Rabaptin-5 and Rabex-5 are neoplastic tumour suppressor genes that interact to modulate Rab5 dynamics in Drosophila melanogaster. Developmental Biology, 2014, 385, 107-121.	2.0	18
23	The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2. Development (Cambridge), 2013, 140, 1045-1054.	2.5	80
24	An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development (Cambridge), 2013, 140, 2061-2074.	2.5	98
25	Control of tissue morphology by Fasciclin III-mediated intercellular adhesion. Development (Cambridge), 2013, 140, 3858-3868.	2.5	29
26	A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins. Development (Cambridge), 2013, 140, 1693-1702.	2.5	46
27	Strabismus Promotes Recruitment and Degradation of Farnesylated Prickle in Drosophila melanogaster Planar Polarity Specification. PLoS Genetics, 2013, 9, e1003654.	3.5	37
28	Localised JAK/STAT Pathway Activation Is Required for Drosophila Wing Hinge Development. PLoS ONE, 2013, 8, e65076.	2.5	28
29	The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2. Journal of Cell Science, 2013, 126, e1-e1.	2.0	0
30	Structure–Function Dissection of the Frizzled Receptor in Drosophila melanogaster Suggests Different Mechanisms of Action in Planar Polarity and Canonical Wnt Signaling. Genetics, 2012, 192, 1295-1313.	2.9	14
31	Planar Polarity Specification through Asymmetric Subcellular Localization of Fat and Dachsous. Current Biology, 2012, 22, 907-914.	3.9	128
32	The roles of the cadherins Fat and Dachsous in planar polarity specification in <i>Drosophila</i> . Developmental Dynamics, 2012, 241, 27-39.	1.8	90
33	Dynamics of Core Planar Polarity Protein Turnover and Stable Assembly into Discrete Membrane Subdomains. Developmental Cell, 2011, 20, 511-525.	7.0	115
34	Principles of planar polarity in animal development. Development (Cambridge), 2011, 138, 1877-1892.	2.5	493
35	Four-Jointed Modulates Growth and Planar Polarity by Reducing the Affinity of Dachsous for Fat. Current Biology, 2010, 20, 803-810.	3.9	132
36	Frizzled Signaling: Cα _o and Rab5 at the Crossroads of the Canonical and PCP Pathways?. Science Signaling, 2010, 3, pe43.	3.6	1

DAVID STRUTT

#	Article	IF	CITATIONS
37	Gradients and the Specification of Planar Polarity in the Insect Cuticle. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000489-a000489.	5.5	38
38	Asymmetric localisation of planar polarity proteins: Mechanisms and consequences. Seminars in Cell and Developmental Biology, 2009, 20, 957-963.	5.0	127
39	The planar polarity pathway. Current Biology, 2008, 18, R898-R902.	3.9	48
40	Differential Stability of Flamingo Protein Complexes Underlies the Establishment of Planar Polarity. Current Biology, 2008, 18, 1555-1564.	3.9	143
41	Planar polarity genes in the <i>Drosophila</i> wing regulate the localisation of the FH3-domain protein Multiple Wing Hairs to control the site of hair production. Development (Cambridge), 2008, 135, 3103-3111.	2.5	65
42	The planar polarity pathway promotes coordinated cell migration during <i>Drosophila</i> oogenesis. Development (Cambridge), 2007, 134, 3055-3064.	2.5	84
43	Microcephalin coordinates mitosis in the syncytial <i>Drosophila</i> embryo. Journal of Cell Science, 2007, 120, 3578-3588.	2.0	39
44	Differential activities of the core planar polarity proteins during Drosophila wing patterning. Developmental Biology, 2007, 302, 181-194.	2.0	100
45	Polarized Transport of Frizzled along the Planar Microtubule Arrays in Drosophila Wing Epithelium. Developmental Cell, 2006, 10, 209-222.	7.0	262
46	Planar Polarity Is Positively Regulated by Casein Kinase IÉ› in Drosophila. Current Biology, 2006, 16, 1329-1336.	3.9	92
47	Longâ€range coordination of planar polarity patterning in Drosophila. Advances in Developmental Biology (Amsterdam, Netherlands), 2005, 14, 39-57.	0.4	1
48	Organ Shape: Controlling Oriented Cell Division. Current Biology, 2005, 15, R758-R759.	3.9	16
49	Long-range coordination of planar polarity inDrosophila. BioEssays, 2005, 27, 1218-1227.	2.5	78
50	Mathematical Modeling of Planar Polarity. Developmental Cell, 2005, 8, 134-136.	7.0	1
51	Cleavage and secretion is not required for Four-jointed function in Drosophila patterning. Development (Cambridge), 2004, 131, 881-890.	2.5	82
52	EGF Signaling and Ommatidial Rotation in the Drosophila Eye. Current Biology, 2003, 13, 1451-1457.	3.9	60
53	Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development (Cambridge), 2003, 130, 4501-4513.	2.5	212
54	Strabismus is asymmetrically localised and binds to Prickle and Dishevelled duringDrosophilaplanar polarity patterning. Development (Cambridge), 2003, 130, 3007-3014.	2.5	285

DAVID STRUTT

#	Article	IF	CITATIONS
55	The asymmetric subcellular localisation of components of the planar polarity pathway. Seminars in Cell and Developmental Biology, 2002, 13, 225-231.	5.0	87
56	Nonautonomous Planar Polarity Patterning in Drosophila. Developmental Cell, 2002, 3, 851-863.	7.0	165
57	Asymmetric Localization of Frizzled and the Determination of Notch-Dependent Cell Fate in the Drosophila Eye. Current Biology, 2002, 12, 813-824.	3.9	146
58	Planar Polarity: Photoreceptors on a High Fat Diet. Current Biology, 2002, 12, R384-R385.	3.9	8
59	Asymmetric Localization of Frizzled and the Establishment of Cell Polarity in the Drosophila Wing. Molecular Cell, 2001, 7, 367-375.	9.7	297
60	Planar polarity: Getting ready to ROCK. Current Biology, 2001, 11, R506-R509.	3.9	18
61	Nuclear signaling by Rac and Rho GTPases is required in the establishment of epithelial planar polarity in the Drosophila eye. Current Biology, 2000, 10, 979-S1.	3.9	168
62	Multiple Roles for four-jointed in Planar Polarity and Limb Patterning. Developmental Biology, 2000, 228, 181-196.	2.0	124
63	The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. Current Biology, 1999, 9, 1363-1372.	3.9	126
64	Polarity determination in the Drosophila eye. Current Opinion in Genetics and Development, 1999, 9, 442-446.	3.3	80
65	Polarity determination in the Drosophila eye: a novel role for Unpaired and JAK/STAT signaling. Genes and Development, 1999, 13, 1342-1353.	5.9	149
66	Dishevelled Activates JNK and Discriminates between JNK Pathways in Planar Polarity and wingless Signaling. Cell, 1998, 94, 109-118.	28.9	730
67	The role of RhoA in tissue polarity and Frizzled signalling. Nature, 1997, 387, 292-295.	27.8	520
68	The regulation of hedgehog and decapentaplegic during Drosophila eye imaginal disc development. Mechanisms of Development, 1996, 58, 39-50.	1.7	27
69	Regulation of furrow progression in the Drosophila eye by cAMP-dependent protein kinase A. Nature, 1995, 373, 705-709.	27.8	127
70	Characterisation of T48, a target of homeotic gene regulation in Drosophila embryogenesis. Mechanisms of Development, 1994, 46, 27-39.	1.7	20
71	Targets of homeotic gene control in Drosophila. Nature, 1990, 348, 308-312.	27.8	169