John M Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1525786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel transaminases from thermophiles: from discovery to application. Microbial Biotechnology, 2022, 15, 305-317.	4.2	9
2	Posttranslational regulation of transporters important for symbiotic interactions. Plant Physiology, 2022, 188, 941-954.	4.8	1
3	Liquid-microjet photoelectron spectroscopy of the green fluorescent protein chromophore. Nature Communications, 2022, 13, 507.	12.8	10
4	Voltage- and Ca ²⁺ -dependent SV/TPC1 ion channel structure at the onset of opening. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200610119.	7.1	1
5	Characterisation of a hyperthermophilic transketolase from <i>Thermotoga maritima</i> DSM3109 as a biocatalyst for 7-keto-octuronic acid synthesis. Organic and Biomolecular Chemistry, 2021, 19, 6493-6500.	2.8	8
6	A photoelectron imaging study of the deprotonated GFP chromophore anion and RNA fluorescent tags. Physical Chemistry Chemical Physics, 2021, 23, 19911-19922.	2.8	3
7	A Palette of Minimally Tagged Sucrose Analogues for Realâ€∓ime Raman Imaging of Intracellular Plant Metabolism. Angewandte Chemie - International Edition, 2021, 60, 7637-7642.	13.8	24
8	A Palette of Minimally Tagged Sucrose Analogues for Realâ€Time Raman Imaging of Intracellular Plant Metabolism. Angewandte Chemie, 2021, 133, 7715-7720.	2.0	8
9	A cell engineering approach to enzyme-based fed-batch fermentation. Microbial Cell Factories, 2021, 20, 146.	4.0	2
10	Multienzyme Oneâ€Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angewandte Chemie - International Edition, 2021, 60, 18673-18679.	13.8	23
11	Multienzyme Oneâ€Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angewandte Chemie, 2021, 133, 18821-18827.	2.0	7
12	Direct Conversion of Hydrazones to Amines using Transaminases. ChemCatChem, 2021, 13, 4520-4523.	3.7	3
13	Engineering transketolase to accept both unnatural donor and acceptor substrates and produce αâ€hydroxyketones. FEBS Journal, 2020, 287, 1758-1776.	4.7	16
14	Phaseolus vulgaris SUT1.1 is a high affinity sucroseâ€proton coâ€transporter. Plant Direct, 2020, 4, e00260.	1.9	3
15	Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases. Communications Chemistry, 2020, 3, .	4.5	10
16	pET expression vector customized for efficient seamless cloning. BioTechniques, 2020, 69, 384-387.	1.8	6
17	Identification and catalytic properties of new epoxide hydrolases from the genomic data of soil bacteria. Enzyme and Microbial Technology, 2020, 139, 109592.	3.2	9
18	Arabidopsis Sucrose Transporter AtSuc1 introns act as strong enhancers of expression. Plant and Cell Physiology, 2020, 61, 1054-1063.	3.1	11

#	Article	IF	CITATIONS
19	Pictet–Spenglerases in alkaloid biosynthesis: Future applications in biocatalysis. Current Opinion in Chemical Biology, 2020, 55, 69-76.	6.1	66
20	Understanding transport processes in lichen, Azolla–cyanobacteria, ectomycorrhiza, endomycorrhiza, and rhizobia–legume symbiotic interactions. F1000Research, 2020, 9, 39.	1.6	24
21	Virus lasers for biological detection. Nature Communications, 2019, 10, 3594.	12.8	27
22	The role of amino acids in the amplification and quality of DNA vectors for industrial applications. Biotechnology Progress, 2019, 35, e2883.	2.6	5
23	Application of Plasmid Engineering to Enhance Yield and Quality of Plasmid for Vaccine and Gene Therapy. Bioengineering, 2019, 6, 54.	3.5	7
24	Acceptance and Kinetic Resolution of α-Methyl-Substituted Aldehydes by Norcoclaurine Synthases. ACS Catalysis, 2019, 9, 9640-9649.	11.2	30
25	The identification and use of robust transaminases from a domestic drain metagenome. Green Chemistry, 2019, 21, 75-86.	9.0	47
26	Aminopolyols from Carbohydrates: Amination of Sugars and Sugarâ€Đerived Tetrahydrofurans with Transaminases. Angewandte Chemie - International Edition, 2019, 58, 3854-3858.	13.8	23
27	Design and Use of de novo Cascades for the Biosynthesis of New Benzylisoquinoline Alkaloids. Angewandte Chemie, 2019, 131, 10226-10231.	2.0	6
28	Biomimetic Phosphate-Catalyzed Pictet–Spengler Reaction for the Synthesis of 1,1′-Disubstituted and Spiro-Tetrahydroisoquinoline Alkaloids. Journal of Organic Chemistry, 2019, 84, 7702-7710.	3.2	13
29	Design and Use of de novo Cascades for the Biosynthesis of New Benzylisoquinoline Alkaloids. Angewandte Chemie - International Edition, 2019, 58, 10120-10125.	13.8	34
30	Metagenomic ene-reductases for the bioreduction of sterically challenging enones. RSC Advances, 2019, 9, 36608-36614.	3.6	13
31	Potential of sugar beet vinasse as a feedstock for biocatalyst production within an integrated biorefinery context. Journal of Chemical Technology and Biotechnology, 2019, 94, 739-751.	3.2	5
32	Novel extremophilic proteases from <i>Pseudomonas aeruginosa</i> M211 and their application in the hydrolysis of dried distiller's grain with solubles. Biotechnology Progress, 2019, 35, e2728.	2.6	7
33	Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells. Biochemical Journal, 2018, 475, 1909-1937.	3.7	60
34	MpAMT1;2 from Marchantia polymorpha is a High-Affinity, Plasma Membrane Ammonium Transporter. Plant and Cell Physiology, 2018, 59, 997-1005.	3.1	10
35	One-pot chemoenzymatic synthesis of trolline and tetrahydroisoquinoline analogues. Chemical Communications, 2018, 54, 1323-1326.	4.1	36
36	Probing binding specificity of the sucrose transporter AtSUC2 with fluorescent coumarin glucosides. Journal of Experimental Botany, 2018, 69, 2473-2482.	4.8	15

#	Article	IF	CITATIONS
37	Enzymatic synthesis of chiral aminoâ€alcohols by coupling transketolase and transaminaseâ€catalyzed reactions in a cascading continuousâ€flow microreactor system. Biotechnology and Bioengineering, 2018, 115, 586-596.	3.3	41
38	Library of Norcoclaurine Synthases and Their Immobilization for Biocatalytic Transformations. Biotechnology Journal, 2018, 13, e1700542.	3.5	17
39	Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 5691-5700.	3.0	14
40	One-pot, two-step transaminase and transketolase synthesis of l-gluco-heptulose from l-arabinose. Enzyme and Microbial Technology, 2018, 116, 16-22.	3.2	22
41	Optimisation of enzyme cascades for chiral amino alcohol synthesis in aid of host cell integration using a statistical experimental design approach. Journal of Biotechnology, 2018, 281, 150-160.	3.8	6
42	The use of a surface active agent in the protection of a fusion protein during bioprocessing. Biotechnology and Bioengineering, 2018, 115, 2760-2770.	3.3	5
43	Data on a thermostable enzymatic one-pot reaction for the production of a high-value compound from l-arabinose. Data in Brief, 2018, 19, 1341-1354.	1.0	1
44	Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems. Plant Physiology, 2017, 173, 1330-1341.	4.8	60
45	A metagenomics approach for new biocatalyst discovery: application to transaminases and the synthesis of allylic amines. Green Chemistry, 2017, 19, 1134-1143.	9.0	34
46	Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics. Chemical Science, 2017, 8, 3154-3163.	7.4	38
47	Contribution of sucrose transporters to phloem unloading within <i>Sorghum bicolor</i> stem internodes. Plant Signaling and Behavior, 2017, 12, e1319030.	2.4	4
48	The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-Informed RNA-Sequencing. Plant Cell, 2017, 29, 984-1006.	6.6	32
49	An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates. Faraday Discussions, 2017, 202, 415-431.	3.2	41
50	Enzyme catalysed Pictet-Spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydroisoquinolines. Nature Communications, 2017, 8, 14883.	12.8	75
51	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
52	Structural Evidence for the Dopamine-First Mechanism of Norcoclaurine Synthase. Biochemistry, 2017, 56, 5274-5277.	2.5	40
53	Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA. Biotechnology Letters, 2017, 39, 1865-1873.	2.2	5
54	Enzymatic and Chemoenzymatic Three tep Cascades for the Synthesis of Stereochemically Complementary Trisubstituted Tetrahydroisoquinolines. Angewandte Chemie - International Edition, 2017, 56, 12503-12507.	13.8	85

#	Article	IF	CITATIONS
55	Furfurylamines from biomass: transaminase catalysed upgrading of furfurals. Green Chemistry, 2017, 19, 397-404.	9.0	94
56	One–Pot Phosphate-Mediated Synthesis of Novel 1,3,5-Trisubstituted Pyridinium Salts: A New Family of S. aureus Inhibitors. Molecules, 2017, 22, 626.	3.8	5
57	Evolution of Electrogenic Ammonium Transporters (AMTs). Frontiers in Plant Science, 2016, 7, 352.	3.6	57
58	A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy. Biotechnology and Bioengineering, 2016, 113, 2064-2071.	3.3	10
59	Metagenome Mining: A Sequence Directed Strategy for the Retrieval of Enzymes for Biocatalysis. ChemistrySelect, 2016, 1, 2217-2220.	1.5	16
60	Transketolase catalysed upgrading of <scp>l</scp> -arabinose: the one-step stereoselective synthesis of <scp>l</scp> -gluco-heptulose. Green Chemistry, 2016, 18, 3158-3165.	9.0	35
61	Micromolar colorimetric detection of 2-hydroxy ketones with the water-soluble tetrazolium WST-1. Analytical Biochemistry, 2016, 493, 8-10.	2.4	9
62	Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases. PLoS Computational Biology, 2016, 12, e1004926.	3.2	24
63	Investigating polymorphisms in membrane-associated transporter protein SLC45A2, using sucrose transporters as a model. Molecular Medicine Reports, 2015, 12, 1393-1398.	2.4	10
64	CATH FunFHMMer web server: protein functional annotations using functional family assignments. Nucleic Acids Research, 2015, 43, W148-W153.	14.5	59
65	Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance. Astrobiology, 2015, 15, 1076-1090.	3.0	71
66	Multispectral Phloem-Mobile Probes: Properties and Applications. Plant Physiology, 2015, 167, 1211-1220.	4.8	66
67	Transport Function of Rice Amino Acid Permeases (AAPs). Plant and Cell Physiology, 2015, 56, 1355-1363.	3.1	60
68	Tetrahydroisoquinolines affect the whole-cell phenotype of <i>Mycobacterium tuberculosis</i> by inhibiting the ATP-dependent MurE ligase. Journal of Antimicrobial Chemotherapy, 2015, 70, 1691-1703.	3.0	24
69	Single activeâ€site mutants are sufficient to enhance serine:pyruvate αâ€transaminase activity in an ï‰â€transaminase. FEBS Journal, 2015, 282, 2512-2526.	4.7	23
70	†Dopamineâ€first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile. FEBS Journal, 2015, 282, 1137-1151.	4.7	60
71	Multi-step biocatalytic strategies for chiral amino alcohol synthesis. Enzyme and Microbial Technology, 2015, 81, 23-30.	3.2	36
72	Amino Acid Positions Important For Substrate Specificity in Plant Sucrose Transporters. FASEB Journal, 2015, 29, 566.13.	0.5	0

#	Article	IF	CITATIONS
73	An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. Journal of Molecular Evolution, 2014, 79, 213-227.	1.8	152
74	The RpfC (Rv1884) atomic structure shows high structural conservation within the resuscitation-promoting factor catalytic domain. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1022-1026.	0.8	14
75	The substrate specificity, enantioselectivity and structure of the (<i><scp>R</scp></i>)â€selective amineÂ:Âpyruvate transaminase from <i><scp>N</scp>ectriaÂhaematococca</i> . FEBS Journal, 2014, 281, 2240-2253.	4.7	60
76	Long-term stabilization of reflective foams in sea water. RSC Advances, 2014, 4, 53028-53036.	3.6	14
77	Synthesis of pharmaceutically relevant 17-α-amino steroids using an ω-transaminase. Chemical Communications, 2014, 50, 6098-6100.	4.1	36
78	Efficient 2-step biocatalytic strategies for the synthesis of all nor(pseudo)ephedrine isomers. Green Chemistry, 2014, 16, 3341-3348.	9.0	66
79	Microscale methods to rapidly evaluate bioprocess options for increasing bioconversion yields: application to the I‰-transaminase synthesis of chiral amines. Bioprocess and Biosystems Engineering, 2014, 37, 931-941.	3.4	18
80	Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Scientific Reports, 2014, 4, 5844.	3.3	54
81	Two Steps in One Pot: Enzyme Cascade for the Synthesis of Nor(pseudo)ephedrine from Inexpensive Starting Materials. Angewandte Chemie - International Edition, 2013, 52, 6772-6775.	13.8	157
82	Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnology and Bioprocess Engineering, 2013, 18, 560-566.	2.6	40
83	A 1-step microplate method for assessing the substrate range of l-α-amino acid aminotransferase. Enzyme and Microbial Technology, 2013, 52, 218-225.	3.2	16
84	Homogeneous antibody fragment conjugation by disulfide bridging introduces â€~spinostics'. Scientific Reports, 2013, 3, 1525.	3.3	59
85	Engineering stereoselectivity of ThDP-dependent enzymes. FEBS Journal, 2013, 280, 6374-6394.	4.7	72
86	Fluorescence Characterization of Clinically-Important Bacteria. PLoS ONE, 2013, 8, e75270.	2.5	56
87	Evolution of plant sucrose uptake transporters. Frontiers in Plant Science, 2012, 3, 22.	3.6	149
88	The Catalytic Potential of <i>Coptis japonica</i> NCS2 Revealed – Development and Utilisation of a Fluorescamineâ€Based Assay. Advanced Synthesis and Catalysis, 2012, 354, 2997-3008.	4.3	70
89	Directed evolution to re-adapt a co-evolved network within an enzyme. Journal of Biotechnology, 2012, 157, 237-245.	3.8	27
90	TTC-based screening assay for ω-transaminases: A rapid method to detect reduction of 2-hydroxy ketones. Journal of Biotechnology, 2012, 159, 188-194.	3.8	29

#	Article	IF	CITATIONS
91	Detection of Pathogenic Bacteria Using a Homogeneous Immunoassay Based on Shear Alignment of Virus Particles and Linear Dichroism. Analytical Chemistry, 2012, 84, 91-97.	6.5	28
92	Identification of Amino Acids Important for Substrate Specificity in Sucrose Transporters Using Gene Shuffling. Journal of Biological Chemistry, 2012, 287, 30296-30304.	3.4	24
93	Arg188 in rice sucrose transporter OsSUT1 is crucial for substrate transport. BMC Biochemistry, 2012, 13, 26.	4.4	12
94	Excessive folate synthesis limits lifespan in the C. elegans: E. coliaging model. BMC Biology, 2012, 10, 67.	3.8	102
95	A novel fluorescent assay for sucrose transporters. Plant Methods, 2012, 8, 13.	4.3	47
96	An automated microscale platform for evaluation and optimization of oxidative bioconversion processes. Biotechnology Progress, 2012, 28, 392-405.	2.6	9
97	Investigating the use of column inserts to achieve better chromatographic bed support. Biotechnology Progress, 2012, 28, 1285-1291.	2.6	5
98	Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars. Analytical and Bioanalytical Chemistry, 2012, 403, 131-144.	3.7	56
99	Experimental determination of photostability and fluorescenceâ€based detection of PAHs on the Martian surface. Meteoritics and Planetary Science, 2012, 47, 806-819.	1.6	28
100	Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase from <i>Sulfolobus solfataricus</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 763-772.	2.5	30
101	Precipitation of filamentous bacteriophages for their selective recovery in primary purification. Biotechnology Progress, 2012, 28, 129-136.	2.6	28
102	Growth and productivity impacts of periplasmic nuclease expression in an <i>Escherichia coli</i> Fab' fragment production strain. Biotechnology and Bioengineering, 2012, 109, 517-527.	3.3	16
103	Phosphate mediated biomimetic synthesis of tetrahydroisoquinoline alkaloids. Chemical Communications, 2011, 47, 3242.	4.1	84
104	Degradation of Cyanobacterial Biosignatures by Ionizing Radiation. Astrobiology, 2011, 11, 997-1016.	3.0	48
105	Directed evolution of a thermostable l-aminoacylase biocatalyst. Journal of Biotechnology, 2011, 155, 396-405.	3.8	10
106	Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon-aided capture (TRACA). FEMS Microbiology Ecology, 2011, 78, 349-354.	2.7	20
107	Selective removal of human DNA from metagenomic DNA samples extracted from dental plaque. Journal of Basic Microbiology, 2011, 51, 442-446.	3.3	18
108	Study of robustness of filamentous bacteriophages for industrial applications. Biotechnology and Bioengineering, 2011, 108, 1468-1472.	3.3	19

#	Article	IF	CITATIONS
109	High-Yield Biocatalytic Amination Reactions in Organic Synthesis. Current Organic Chemistry, 2010, 14, 1914-1927.	1.6	139
110	Desiccation resistance of Antarctic Dry Valley bacteria isolated from contrasting locations. Antarctic Science, 2010, 22, 171-172.	0.9	7
111	Evaluation of anthrax vaccine production by Bacillus anthracis Sterne 34F2 in stirred suspension culture using a miniature bioreactor: A useful scale-down tool for studies on fermentations at high containment. Biochemical Engineering Journal, 2010, 50, 139-144.	3.6	3
112	Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen?. Periodontology 2000, 2010, 54, 78-105.	13.4	184
113	Astrobiological Considerations for the Selection of the Geological Filters on the ExoMars PanCam Instrument. Astrobiology, 2010, 10, 933-951.	3.0	15
114	A Multidisciplinary Approach Toward the Rapid and Preparative-Scale Biocatalytic Synthesis of Chiral Amino Alcohols: A Concise Transketolase-/ï‰-Transaminase-Mediated Synthesis of (2 <i>S</i> ,3 <i>S</i>)-2-Aminopentane-1,3-diol. Organic Process Research and Development, 2010, 14, 99-107.	2.7	80
115	Low-Temperature Ionizing Radiation Resistance of <i>Deinococcus radiodurans</i> and Antarctic Dry Valley Bacteria. Astrobiology, 2010, 10, 717-732.	3.0	76
116	Transport Activity of Rice Sucrose Transporters OsSUT1 and OsSUT5. Plant and Cell Physiology, 2010, 51, 114-122.	3.1	80
117	α,α′-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes. Chemical Communications, 2010, 46, 7608.	4.1	45
118	Complete fluorescent fingerprints of extremophilic and photosynthetic microbes. International Journal of Astrobiology, 2010, 9, 245-257.	1.6	28
119	The Analysis of Multiple Genome Comparisons in Genus <i>Escherichia</i> and Its Application to the Discovery of Uncharacterised Metabolic Genes in Uropathogenic <i>Escherichia coli</i> CFT073. Comparative and Functional Genomics, 2009, 2009, 1-8.	2.0	3
120	Synthesis of pyridoxamine 5′-phosphate using an MBA:pyruvate transaminase as biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 279-285.	1.8	44
121	Stereoselectivity of an ω-transaminase-mediated amination of 1,3-dihydroxy-1-phenylpropane-2-one. Tetrahedron: Asymmetry, 2009, 20, 570-574.	1.8	45
122	Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses. Annual Review of Physiology, 2009, 71, 59-82.	13.1	335
123	Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Molecular Biology, 2008, 68, 289-299.	3.9	131
124	Evolutionary Analysis of the TPP-Dependent Enzyme Family. Journal of Molecular Evolution, 2008, 66, 36-49.	1.8	66
125	Host strain influences on supercoiled plasmid DNA production in <i>Escherichia coli</i> : Implications for efficient design of largeâ€scale processes. Biotechnology and Bioengineering, 2008, 101, 529-544.	3.3	45
126	Largeâ€scale plasmid DNA processing: evidence that cell harvesting and storage methods affect yield of supercoiled plasmid DNA. Biotechnology and Applied Biochemistry, 2008, 51, 43-51.	3.1	17

#	Article	IF	CITATIONS
127	Preparative scale Baeyer–Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process. Nature Protocols, 2008, 3, 546-554.	12.0	78
128	Characterization of Oxygen Transfer in Miniature and Lab-Scale Bubble Column Bioreactors and Comparison of Microbial Growth Performance Based on Constant kLa. Biotechnology Progress, 2008, 21, 1175-1182.	2.6	35
129	Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde. Journal of Biotechnology, 2008, 134, 240-245.	3.8	69
130	Novel Adhesin from Pasteurella multocida That Binds to the Integrin-Binding Fibronectin FnIII 9-10 Repeats. Infection and Immunity, 2008, 76, 1093-1104.	2.2	21
131	Arabidopsis Sucrose Transporter AtSUC1 Is Important for Pollen Germination and Sucrose-Induced Anthocyanin Accumulation. Plant Physiology, 2008, 147, 92-100.	4.8	165
132	Pasteurellaceae ComE1 Proteins Combine the Properties of Fibronectin Adhesins and DNA Binding Competence Proteins. PLoS ONE, 2008, 3, e3991.	2.5	28
133	Arabidopsis Sucrose Transporter AtSUC9. High-Affinity Transport Activity, Intragenic Control of Expression, and Early Flowering Mutant Phenotype. Plant Physiology, 2007, 143, 188-198.	4.8	147
134	Directed evolution of transketolase activity on non-phosphorylated substrates. Journal of Biotechnology, 2007, 131, 425-432.	3.8	74
135	Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme and Microbial Technology, 2007, 41, 628-637.	3.2	277
136	Comparative functional genomic analysis of Pasteurellaceae adhesins using phage display. Veterinary Microbiology, 2007, 122, 123-134.	1.9	14
137	Phage display in the study of infectious diseases. Trends in Microbiology, 2006, 14, 141-147.	7.7	80
138	Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends in Microbiology, 2006, 14, 271-276.	7.7	126
139	Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. Plant, Cell and Environment, 2006, 29, 1871-1880.	5.7	85
140	A colorimetric assay for screening transketolase activity. Bioorganic and Medicinal Chemistry, 2006, 14, 7062-7065.	3.0	51
141	A capillary cytometer method to quantitate viable virus particles based on early detection of viral antigens and cellular events within single cells. Journal of Virological Methods, 2006, 137, 213-218.	2.1	2
142	A novel method for the measurement of oxygen mass transfer rates in small-scale vessels. Biochemical Engineering Journal, 2005, 25, 63-68.	3.6	20
143	Directed evolution of biocatalytic processes. New Biotechnology, 2005, 22, 11-19.	2.7	107
144	Bioprocess Engineering Issues That Would Be Faced in Producing a DNA Vaccine at up to 100 m3 Fermentation Scale for an Influenza Pandemic. Biotechnology Progress, 2005, 21, 1577-1592.	2.6	66

#	Article	IF	CITATIONS
145	The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes. Nature Structural and Molecular Biology, 2005, 12, 270-273.	8.2	131
146	Analysis of the Transport Activity of Barley Sucrose Transporter HvSUT1. Plant and Cell Physiology, 2005, 46, 1666-1673.	3.1	59
147	AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant Journal, 2004, 40, 488-499.	5.7	96
148	Resuscitation-promoting factors possess a lysozyme-like domain. Trends in Biochemical Sciences, 2004, 29, 7-10.	7.5	60
149	Impact of intrinsic DNA structure on processing of plasmids for gene therapy and DNA vaccines. Journal of Biotechnology, 2004, 114, 239-254.	3.8	35
150	Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnology and Applied Biochemistry, 2003, 37, 83.	3.1	57
151	How Streptomyces lividans uses oils and sugars as mixed substrates. Enzyme and Microbial Technology, 2003, 32, 157-166.	3.2	22
152	Ferredoxin reductase enhances heterologously expressed cytochrome CYP105D1 in Escherichia coli and Streptomyces lividans. Enzyme and Microbial Technology, 2003, 32, 790-800.	3.2	8
153	Molecular Pathogenicity of the Oral Opportunistic Pathogen <i>Actinobacillus actinomycetemcomitans</i> . Annual Review of Microbiology, 2003, 57, 29-55.	7.3	177
154	Impact of plasmid size on cellular oxygen demand in Escherichia coli. Biotechnology and Applied Biochemistry, 2003, 38, 1.	3.1	16
155	Shear-induced release of disabled herpes simplex virus from baby-hamster kidney cells. Biotechnology and Applied Biochemistry, 2003, 38, 271.	3.1	1
156	Plants pass the salt. Trends in Plant Science, 2003, 8, 200-201.	8.8	69
157	Enhanced Heterologous Expression of Two Streptomyces griseolus Cytochrome P450s and Streptomyces coelicolor Ferredoxin Reductase as Potentially Efficient Hydroxylation Catalysts. Applied and Environmental Microbiology, 2003, 69, 373-382.	3.1	49
158	Substrate Specificity of the Arabidopsis thaliana Sucrose Transporter AtSUC2. Journal of Biological Chemistry, 2003, 278, 44320-44325.	3.4	108
159	Loading acetoxymethyl ester fluorescent dyes into the cytoplasm of Arabidopsis and Commelina guard cells. New Phytologist, 2002, 153, 527-533.	7.3	22
160	Actinobacillus actinomycetemcomitans. Journal of Medical Microbiology, 2002, 51, 1013-1020.	1.8	71
161	Analysis of the effect of changing environmental conditions on the expression patterns of exported surface-associated proteins of the oral pathogen Actinobacillus actinomycetemcomitans. Microbial Pathogenesis, 2001, 30, 359-368.	2.9	37
162	Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiology, 2001, 126, 1646-1667.	4.8	1,110

#	Article	IF	CITATIONS
163	Functional characterization of the αâ€glucoside transporter Sut1p from <i>Schizosaccharomyces pombe</i> , the first fungal homologue of plant sucrose transporters. Molecular Microbiology, 2001, 39, 445-455.	2.5	63
164	Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme and Microbial Technology, 2001, 28, 265-274.	3.2	119
165	SUT2, a Putative Sucrose Sensor in Sieve Elements. Plant Cell, 2000, 12, 1153-1164.	6.6	303
166	A New Subfamily of Sucrose Transporters, SUT4, with Low Affinity/High Capacity Localized in Enucleate Sieve Elements of Plants. Plant Cell, 2000, 12, 1345-1355.	6.6	288
167	Identification of a Novel Gene Cluster Encoding Staphylococcal Exotoxin-Like Proteins: Characterization of the Prototypic Gene and Its Protein Product, SET1. Infection and Immunity, 2000, 68, 4407-4415.	2.2	119
168	Function of the cytosolic N-terminus of sucrose transporter AtSUT2 in substrate affinity. FEBS Letters, 2000, 485, 189-194.	2.8	78
169	The mitochondrial permeability transition pore. Biochemical Society Symposia, 1999, 66, 167-179.	2.7	195
170	Import and processing of heart mitochondrial cyclophilin D. FEBS Journal, 1999, 263, 353-359.	0.2	53
171	Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. FEBS Journal, 1998, 258, 729-735.	0.2	423
172	Rational engineering of the TOLmeta-cleavage pathway. , 1998, 58, 240-249.		7
173	30 Mitochondrial import of cyclophilin-D. Biochemical Society Transactions, 1998, 26, S329-S329.	3.4	0
174	31 Cyclophilin-D binding proteins. Biochemical Society Transactions, 1998, 26, S330-S330.	3.4	6
175	Production and Modification of E. coli Transketolase for Large-Scale Biocatalysis. Annals of the New York Academy of Sciences, 1996, 799, 11-18.	3.8	6
176	Involvement of Cyclophilin D in the Activation of A mitochondrial Pore by Ca2+ and Oxidant Stress. FEBS Journal, 1996, 238, 166-172.	0.2	149
177	Development of a simple method for the recovery of recombinant proteins from the Escherichia coli periplasm. Enzyme and Microbial Technology, 1996, 19, 332-338.	3.2	64
178	Improved production and stability ofE. coli recombinants expressing transketolase for large scale biotransformation. Biotechnology Letters, 1995, 17, 247-252.	2.2	30
179	Stability of plasmid vector plJ303 inStreptomyces lividans TK24 during laboratory-scale fermentations. Biotechnology and Bioengineering, 1993, 41, 148-155.	3.3	15
180	Identification of the Minimal Replicon of the Streptomycete Plasmid pIJ101. Plasmid, 1993, 29, 57-62.	1.4	6

John M Ward

#	Article	IF	CITATIONS
181	Sequence of the Streptomyces thermoviolaceus CUB74 α-amylase-encoding gene and its transcription analysis in Streptomyces lividans. Gene, 1993, 127, 133-137.	2.2	13
182	Expression and characterisation of thekorBgene product from theStreptomyces lividansplasmid plJ101 inEscherichia coliand determination of its binding site on thekorBandkilBpromoters. Nucleic Acids Research, 1992, 20, 3693-3700.	14.5	12
183	Production of mature bovine pancreatic ribonuclease in Escherichia coli. Gene, 1992, 118, 239-245.	2.2	17
184	A method for plasmid copy number determination in recombinant Streptomyces. Journal of Microbiological Methods, 1992, 16, 69-80.	1.6	5
185	Phosphocellulose as a tool for rapid purification of DNA-modifying enzymes. Analytica Chimica Acta, 1991, 249, 195-200.	5.4	16
186	Molecular relationships between Pseudomonas INC P-9 degradative plasmids TOL, NAH, and SAL. Plasmid, 1983, 10, 164-174.	1.4	54
187	Mapping of functions in the R-plasmid R388 by examination of deletion mutants generated in vitro. Gene, 1978, 3, 87-95.	2.2	46