Ricardo Rigual

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1525283/publications.pdf

Version: 2024-02-01

36 papers 1,964 citations

331538 21 h-index 34 g-index

36 all docs

36 does citations

36 times ranked

874 citing authors

#	Article	IF	CITATIONS
1	Peripheral Dopamine 2-Receptor Antagonist Reverses Hypertension in a Chronic Intermittent Hypoxia Rat Model. International Journal of Molecular Sciences, 2020, 21, 4893.	1.8	4
2	Adrenal Medulla Chemo Sensitivity Does Not Compensate the Lack of Hypoxia Driven Carotid Body Chemo Reflex in Guinea Pigs. Advances in Experimental Medicine and Biology, 2018, 1071, 167-174.	0.8	0
3	Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia. Journal of Physiology, 2015, 593, 2459-2477.	1.3	7
4	Fernando de Castro and the discovery of the arterial chemoreceptors. Frontiers in Neuroanatomy, 2014, 8, 25.	0.9	16
5	Effects of low glucose on carotid body chemoreceptor cell activity studied in cultures of intact organs and in dissociated cells. American Journal of Physiology - Cell Physiology, 2012, 302, C1128-C1140.	2.1	26
6	Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. Journal of Applied Physiology, 2012, 112, 2002-2010.	1.2	54
7	Chronic Caffeine Intake in Adult Rat Inhibits Carotid Body Sensitization Produced by Chronic Sustained Hypoxia but Maintains Intact Chemoreflex Output. Molecular Pharmacology, 2012, 82, 1056-1065.	1.0	21
8	Some Reflections on Intermittent Hypoxia. Does it Constitute the Translational Niche for Carotid Body Chemoreceptor Researchers?. Advances in Experimental Medicine and Biology, 2012, 758, 333-342.	0.8	6
9	A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respiratory Physiology and Neurobiology, 2010, 174, 317-330.	0.7	31
10	Chemoreception in the context of the general biology of ROS. Respiratory Physiology and Neurobiology, 2007, 157, 30-44.	0.7	50
11	Hypoxia transduction by carotid body chemoreceptors in mice lacking dopamine D2 receptors. Journal of Applied Physiology, 2007, 103, 1269-1275.	1.2	22
12	Function of the rat carotid body chemoreceptors in ageing. Journal of Neurochemistry, 2006, 99, 711-723.	2.1	28
13	Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. Journal of Neurochemistry, 2006, 98, 616-628.	2.1	62
14	A Comparative Study of the Hypoxic Secretory Response between Neonatal Adrenal Medulla and Adult Carotid Body from the Rat., 2006, 580, 131-135.		0
15	Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells. Journal of Physiology, 2005, 562, 407-420.	1.3	31
16	Ventilatory responses and carotid body function in adult rats perinatally exposed to hyperoxia. Journal of Physiology, 2004, 554, 126-144.	1.3	32
17	The Use of NK-1 Receptor Null Mice to Assess the Significance of Substance P in the Carotid Body Function Advances in Experimental Medicine and Biology, 2003, 536, 327-336.	0.8	1
18	Effects of Perinatal Hyperoxia on Carotid Body Chemoreceptor Activity in Vitro. Advances in Experimental Medicine and Biology, 2003, 536, 517-524.	0.8	2

#	Article	IF	Citations
19	Modulation of secretion by the endoplasmic reticulum in mouse chromaffin cells. European Journal of Neuroscience, 2002, 16, 1690-1696.	1.2	23
20	Chemoreceptor activity is normal in mice lacking the NK1 receptor. European Journal of Neuroscience, 2002, 16, 2078-2084.	1.2	15
21	Single-unit recordings of arterial chemoreceptors from mouse petrosal ganglia in vitro. Journal of Applied Physiology, 2000, 88, 1489-1495.	1.2	29
22	Hypoxia inhibits the synthesis of phosphoinositides in the rabbit carotid body. Pflugers Archiv European Journal of Physiology, 1999, 437, 839-845.	1.3	10
23	Cholera and Pertussis Toxins Reveal Multiple Regulation of cAMP Levels in the Rabbit Carotid Body. European Journal of Neuroscience, 1996, 8, 2320-2327.	1.2	14
24	Oxygen Sensing in the Carotid Body. NeuroSignals, 1995, 4, 245-256.	0.5	15
25	Carotid body chemoreceptors: from natural stimuli to sensory discharges Physiological Reviews, 1994, 74, 829-898.	13.1	979
26	Opioid Peptides in the Rabbit Carotid Body: Identification and Evidence for Co-Utilization and Interactions with Dopamine. Journal of Neurochemistry, 1993, 60, 1762-1768.	2.1	15
27	Effects of Chronic Hypoxia on Opioid Peptide and Catecholamine Levels and on the Release of Dopamine in the Rabbit Carotid Body. Journal of Neurochemistry, 1993, 60, 1769-1776.	2.1	21
28	Effect of low O2 on glucose uptake in rabbit carotid body. Journal of Applied Physiology, 1993, 74, 2387-2393.	1.2	27
29	Effects of almitrine on the release of catecholamines from the rabbit carotid body <i>in vitro</i> British Journal of Pharmacology, 1992, 106, 697-702.	2.7	5
30	Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends in Neurosciences, 1992, 15, 146-153.	4.2	184
31	Release of dopamine and chemoreceptor discharge induced by low pH and high PCO2 stimulation of the cat carotid body Journal of Physiology, 1991, 433, 519-531.	1.3	64
32	Activity of an NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase in normal tissue, neoplastic cells, and oncogene-transformed cells. Archives of Biochemistry and Biophysics, 1990, 283, 367-371.	1.4	28
33	Mechanisms for termination of the action of dopamine in carotid body chemoreceptors. Journal of the Autonomic Nervous System, 1987, 18, 249-259.	1.9	22
34	Synthesis and release of catecholamines by the cat carotid body in vitro: Effects of hypoxic stimulation. Brain Research, 1986, 374, 101-109.	1.1	51
35	Carbonic anhydrase in the carotid body and the carotid sinus nerve. Histochemistry, 1985, 82, 577-580.	1.9	30
36	Effects of low pH on synthesis and release of catecholamines in the cat carotid body in vitro. Brain Research, 1984, 309, 178-181.	1.1	39