Igor Makarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1525022/publications.pdf Version: 2024-02-01

ICOP MAKADOV

#	Article	IF	CITATIONS
1	An econometric model of serial correlation and illiquidity in hedge fund returns. Journal of Financial Economics, 2004, 74, 529-609.	4.6	885
2	Trading and arbitrage in cryptocurrency markets. Journal of Financial Economics, 2020, 135, 293-319.	4.6	406
3	Forecasting the forecasts of others: Implications for asset pricing. Journal of Economic Theory, 2012, 147, 941-966.	0.5	58
4	The equity risk premium and the riskfree rate in an economy with borrowing constraints. Mathematics and Financial Economics, 2007, 1, 1-19.	1.0	42
5	CDS Auctions. Review of Financial Studies, 2013, 26, 768-805.	3.7	39
6	Rewarding Trading Skills without Inducing Gambling. Journal of Finance, 2015, 70, 925-962.	3.2	35
7	Impacts of climate change policies worldwide on the Russian economy. Climate Policy, 2020, 20, 1242-1256.	2.6	35
8	Cellulose composite membranes for nanofiltration of aprotic solvents. Petroleum Chemistry, 2016, 56, 1085-1092.	0.4	31
9	Solutions of cellulose and its blends with synthetic polymers in N-methylmorpholine-N-oxide: Preparation, phase state, structure, and properties. Polymer Science - Series A, 2010, 52, 1209-1219.	0.4	17
10	Crystal solvates of thermotropic alkylenearomatic copolyesters and poly(m-phenyleneisophthalamide) with N-methylmorpholine-N-oxide. Polymer Science - Series A, 2008, 50, 665-678.	0.4	13
11	Structure, Morphology, and Permeability of Cellulose Films. Membranes, 2022, 12, 297.	1.4	13
12	Cellulose–co-polyacrylonitrile blends: Properties of combined solutions in N-metylmorpholine-N-oxide and the formation and thermolysis of composite fibers. Polymer Science - Series C, 2016, 58, 74-84.	0.8	12
13	Solutions of acrylonitrile copolymers in N -methylmorpholine- N -oxide: Structure, properties, fiber spinning. European Polymer Journal, 2017, 92, 326-337.	2.6	12
14	Carbon—Silicon-Carbide Fibers Prepared from Solid Solutions of Cellulose in N-Methylmorpholine-N-Oxide with Added Tetraethoxysilane. Fibre Chemistry, 2017, 49, 231-236.	0.0	12
15	Improvement in Carbonization Efficiency of Cellulosic Fibres Using Silylated Acetylene and Alkoxysilanes. Fibers, 2019, 7, 84.	1.8	12
16	Flax Noils as a Source of Cellulose for the Production of Lyocell Fibers. Fibers, 2022, 10, 45.	1.8	12
17	Debt Overhang and Barter in Russia. Journal of Comparative Economics, 2002, 30, 635-656.	1.1	11
18	Climate Change and Inequality: How to Solve These Problems Jointly?. International Organisations Research Journal, 2020, 15, 7-30.	0.3	11

Igor Makarov

#	Article	IF	CITATIONS
19	Equilibrium Subprime Lending. Journal of Finance, 2013, 68, 849-879.	3.2	10
20	Influence of Precipitation and Conditioning Baths on the Structure, Morphology, and Properties of Cellulose Films. Fibre Chemistry, 2016, 48, 298-305.	0.0	10
21	Composite Fibers Based on Cellulose and Tetraetoxysilane: Preparation, Structure and Properties. Fibre Chemistry, 2017, 49, 101-107.	0.0	10
22	A Role of Coagulant in Structure Formation of Fibers and Films Spun from Cellulose Solutions. Materials, 2020, 13, 3495.	1.3	10
23	Films of Bacterial Cellulose Prepared from Solutions in N-Methylmorpholine-N-Oxide: Structure and Properties. Processes, 2020, 8, 171.	1.3	10
24	Cellulose Fibers from Solutions of Bacterial Cellulose in N-Methylmorpholine N-Oxide. Fibre Chemistry, 2019, 51, 175-181.	0.0	9
25	Rheological Properties of Aqueous Dispersions of Bacterial Cellulose. Processes, 2020, 8, 423.	1.3	9
26	Morphology and transport properties of membranes obtained by coagulation of cellulose solutions in isobutanol. Carbohydrate Polymers, 2021, 254, 117472.	5.1	9
27	The Eurasian Economic Union and the Silk Road Economic Belt: Opportunities for Russia. International Organisations Research Journal, 2016, 11, 40-57.	0.3	9
28	Composite fibers based on cellulose and polyacrylonitrile copolymers. Russian Journal of General Chemistry, 2017, 87, 1351-1356.	0.3	8
29	Structural and Morphological Features of Carbon—Silicon-Carbide Fibers Based on Cellulose and Triethoxyvinylsilane. Fibre Chemistry, 2018, 50, 79-84.	0.0	8
30	The Role of Isobutanol as a Precipitant of Cellulose Films Formed from N-Methylmorpholine N-Oxide Solutions: Phase State and Structural and Morphological Features. Polymer Science - Series A, 2019, 61, 598-609.	0.4	8
31	Composite Fibers Based on Cellulose and Vinyltriethoxysilane as Precursors of Carbon Materials. Polymer Science - Series B, 2020, 62, 152-162.	0.3	8
32	New Hydrated Cellulose Fiber Based on Flax Cellulose. Russian Journal of General Chemistry, 2021, 91, 1807-1815.	0.3	8
33	Antifungal Composite Fibers Based on Cellulose and Betulin. Fibers, 2018, 6, 23.	1.8	7
34	Structure of Polyacrylonitrile Fibers Produced from N-Methylmorpholine-N-Oxide Solutions. Fibre Chemistry, 2019, 50, 508-513.	0.0	7
35	Solutions of mixtures of cellulose and synthetic polymers in N-methylmorpholine-N-oxide. Polymer Science - Series A, 2009, 51, 283-294.	0.4	5
36	Morphological Features and Rheological Properties of Combined Cellulose and Polyacrylonitrile Solutions in N-Methylmorpholine-N-oxide. Polymer Science - Series A, 2018, 60, 796-804.	0.4	5

Igor Makarov

#	Article	IF	CITATIONS
37	The Effect of Alcohol Precipitants on Structural and Morphological Features and Thermal Properties of Lyocell Fibers. Fibers, 2020, 8, 43.	1.8	5
38	Morphological Transformations in the Process of Coagulation of Cellulose Solution in N-Methylmorpholine N-Oxide with Isobutanol. Polymer Science - Series C, 2021, 63, 161-169.	0.8	5
39	Rheological properties of mixed solutions of cellulose and layered aluminosilicates in N-methylmorpholine-N-oxide. Polymer Science - Series A, 2013, 55, 258-267.	0.4	4
40	Composite Fibers From Cellulose Solutions with Additives of Bis (Trimethylsilyl) Acetylene and Alkoxysilanes: Rheology, Structure and Properties. Fibre Chemistry, 2019, 51, 26-31.	0.0	4
41	Peculiarities of Dissolving Polyacrylonitrile Copolymer Containing Methylsulfo Groups in N-Methylmorpholine-N-Oxide. Polymer Science - Series A, 2020, 62, 597-606.	0.4	4
42	Composite fibres based on cellulose and vinyltriethoxysilane: preparation, properties and carbonization. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012032.	0.3	3
43	Graphitized Carbon Fibers Based on Lyocell Precursors. IOP Conference Series: Earth and Environmental Science, 2019, 316, 012032.	0.2	3
44	Design and Fabrication of Membranes Based on PAN Copolymer Obtained from Solutions in N-methylmorpholine-N-oxide. Polymers, 2022, 14, 2861.	2.0	3
45	Structure - Properties Interrelationships in Multicomponent Solutions Based on Cellulose and Fibers Spun Therefrom. , 0, , .		2
46	The numerical method for analysis of arbitrary type queuing systems application. , 2016, , .		2
47	Building a Common Eurasian Infrastructure: Agenda for the Eurasian Economic Union. International Organisations Research Journal, 2018, 13, 97-112.	0.3	2
48	Bridging the Gaps in the Polycentric Climate Change Regime. , 2020, , 163-181.		2
49	Green Transformation of the World Economy: Risks and Opportunities for Russia. , 2020, , 123-141.		2
50	Effect of MQ-copolymer and polymethylsilsesquioxane on thermal and mechanical properties of highly filled polyisoprene. Russian Chemical Bulletin, 2021, 70, 2200-2207.	0.4	2
51	Transformation of China's Development Model under Xi Jinping and its Implications for Russian Exports. Asian Politics and Policy, 2018, 10, 633-654.	0.6	1
52	The Thermal Behavior of Lyocell Fibers Containing Bis(trimethylsilyl)acetylene. Polymers, 2021, 13, 537.	2.0	1
53	FROM THE HISTORY OF RELIGIOUS CULTS IN TAURIC CHERSONESUS. Ancient Civilizations From Scythia To Siberia, 2002, 8, 189-198.	0.1	0
54	Analysis of the multiservice communication network's node as a arbitrary type queuing system. , 2017, ,		0

#	Article	IF	CITATIONS
55	Gas-Transport and the Dielectric Properties of Metathesis Polymer from the Ester of exo-5-Norbornenecarboxylic Acid and $1,1\hat{a}\in^2$ -Bi-2-naphthol. Polymers, 2022, 14, 2697.	2.0	0