Tamas Szabo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1524643/publications.pdf

Version: 2024-02-01

55	6,182	27 h-index	54
papers	citations		g-index
56	56	56	9766
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water. International Journal of Environmental Research and Public Health, 2022, 19, 3640.	1.2	3
2	Magnetic Nanoparticle Systems for Nanomedicineâ€"A Materials Science Perspective. Magnetochemistry, 2020, 6, 2.	1.0	79
3	Size-dependent aggregation of graphene oxide. Carbon, 2020, 160, 145-155.	5.4	86
4	Ion Specific Effects on the Stability of Halloysite Nanotube Colloids—Inorganic Salts versus Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 9757-9765.	1.2	24
5	Tunable Magnetic Hyperthermia Properties of Pristine and Mildly Reduced Graphene Oxide/Magnetite Nanocomposite Dispersions. Nanomaterials, 2020, 10, 2426.	1.9	7
6	Effects of Size and Oxidation on the Nonlinear Optical Response and Optical Limiting of Graphene Oxide Sheets. Journal of Physical Chemistry C, 2020, 124, 11265-11273.	1.5	8
7	Striking analogies and dissimilarities between graphene oxides and humic acids: pH-dependent charging and colloidal stability. Journal of Molecular Liquids, 2020, 306, 112948.	2.3	6
8	Immobilization of a Pd(II) complex on hydrophilic graphite oxide and its catalytic investigation in the Heck coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5565.	1.7	8
9	Graphite Oxide-TiO2 Nanocomposite Type Photocatalyst for Methanol Photocatalytic Reforming Reaction. Topics in Catalysis, 2018, 61, 1323-1334.	1.3	11
10	A Simple and Scalable Method for the Preparation of Magnetite/Graphene Oxide Nanocomposites under Mild Conditions. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.0	9
11	Systematic evaluation of different types of graphene oxide in respect to variations in their in-plane modulus. Carbon, 2017, 114, 700-705.	5 . 4	44
12	Neurotoxic effects of subchronic intratracheal Mn nanoparticle exposure alone and in combination with other welding fume metals in rats. Inhalation Toxicology, 2017, 29, 227-238.	0.8	9
13	Nonactivated titanium-dioxide nanoparticles promote the growth of Chlamydia trachomatisand decrease the antimicrobial activity of silver nanoparticles. Journal of Applied Microbiology, 2017, 123, 1335-1345.	1.4	6
14	Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach. Journal of Magnetism and Magnetic Materials, 2017, 427, 280-288.	1.0	11
15	Stability and dye inclusion of graphene oxide/polyelectrolyte layer-by-layer self-assembled films in saline, acidic and basic aqueous solutions. Carbon, 2017, 111, 350-357.	5. 4	15
16	Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media. Interface Focus, 2016, 6, 20160068.	1.5	26
17	Synthesis and enantioselective transport studies of optically active lipophilic proton-ionizable crown ethers containing a diarylphosphinic acid unit. Tetrahedron: Asymmetry, 2015, 26, 650-656.	1.8	6
18	Tuning the Aggregation of Titanate Nanowires in Aqueous Dispersions. Langmuir, 2015, 31, 42-49.	1.6	25

#	Article	IF	CITATIONS
19	Dendrimer-Stabilized Titanate Nanowire Dispersions as Potential Nanocarriers. Journal of Physical Chemistry C, 2015, 119, 24919-24926.	1.5	17
20	Catalytic investigation of PdCl2(TDA)2 immobilized on hydrophobic graphite oxide in the hydrogenation of 1-pentyne and the Heck coupling reaction. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 61-68.	0.8	5
21	Dispersion Characteristics and Aggregation in Titanate Nanowire Colloids. ChemPlusChem, 2014, 79, 592-600.	1.3	15
22	Intercalation and coordination of copper(II)–2,2′-bipyridine complexes into graphite oxide. Carbon, 2014, 72, 425-428.	5.4	10
23	The structure of graphene oxide membranes in liquid water, ethanol and water–ethanol mixtures. Nanoscale, 2014, 6, 272-281.	2.8	180
24	Synthesis and transport studies of new enantiopure lipophilic crown ethers containing a diarylphosphinic acid unit. Tetrahedron: Asymmetry, 2014, 25, 1443-1449.	1.8	6
25	Particle aggregation mechanisms in ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 9515-9524.	1.3	55
26	Formulation of Multifunctional Material Dispersions. Chimia, 2014, 68, 454.	0.3	3
27	Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon, 2013, 52, 171-180.	5.4	148
28	Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. Journal of Physical Chemistry C, 2013, 117, 6842-6850.	1.5	163
29	Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 230-239.	2.3	45
30	Interaction of Biological Molecules with Clay Minerals: A Combined Spectroscopic and Sorption Study of Lysozyme on Saponite. Langmuir, 2012, 28, 611-619.	1.6	38
31	Synthesis and catalytic investigation of organophilic Pd/graphite oxide nanocomposites. Catalysis Communications, 2012, 17, 104-107.	1.6	7
32	Structural Breathing of Graphite Oxide Pressurized in Basic and Acidic Solutions Journal of Physical Chemistry Letters, 2011, 2, 309-313.	2.1	27
33	Doxorubicin Nanocarriers Based on Magnetic Colloids with a Bioâ€polyelectrolyte Corona and High Nonâ€linear Optical Response: Synthesis, Characterization, and Properties. Advanced Functional Materials, 2011, 21, 1465-1475.	7.8	29
34	Temperature dependent structural breathing of hydrated graphite oxide in H2O. Carbon, 2011, 49, 1894-1899.	5.4	74
35	Hybrid Langmuir–Blodgett monolayers of graphite oxide nanosheets. Carbon, 2010, 48, 1676-1680.	5.4	39
36	AFM Study of Smectites in Hybrid Langmuir-Blodgett Films: Saponite, Wyoming Bentonite, Hectorite, and Laponite. Clays and Clay Minerals, 2009, 57, 706-714.	0.6	12

#	Article	IF	Citations
37	Optical properties of zinc peroxide and zinc oxide multilayer nanohybrid films. Applied Surface Science, 2009, 255, 6953-6962.	3.1	32
38	Plasmonic structure generation by laser illumination of silica colloid spheres deposited onto prepatterned polymer-bimetal films. Applied Surface Science, 2009, 255, 5138-5145.	3.1	5
39	Pressure-Induced Insertion of Liquid Alcohols into Graphite Oxide Structure. Journal of the American Chemical Society, 2009, 131, 18445-18449.	6.6	74
40	Nanocarbons by High-Temperature Decomposition of Graphite Oxide at Various Pressures. Journal of Physical Chemistry C, 2009, 113, 11279-11284.	1.5	37
41	Colossal Pressureâ€Induced Lattice Expansion of Graphite Oxide in the Presence of Water. Angewandte Chemie - International Edition, 2008, 47, 8268-8271.	7.2	109
42	Optical properties of zinc oxide ultrathin hybrid films on silicon wafer prepared by layer-by-layer method. Thin Solid Films, 2008, 516, 3009-3014.	0.8	14
43	Magnetically Modified Single and Turbostratic Stacked Graphenes from Tris(2,2′-bipyridyl) Iron(II) Ion-Exchanged Graphite Oxide. Journal of Physical Chemistry B, 2008, 112, 14461-14469.	1.2	42
44	Adsorption of protamine and papain proteins on saponite. Clays and Clay Minerals, 2008, 56, 494-504.	0.6	37
45	Magnetic iron oxide/clay composites: effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles. Nanotechnology, 2007, 18, 285602.	1.3	55
46	Layer-by-Layer Construction of Ultrathin Hybrid Films with Proteins and Clay Minerals. Journal of Physical Chemistry C, 2007, 111, 12730-12740.	1.5	45
47	Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon, 2006, 44, 537-545.	5.4	456
48	Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chemistry of Materials, 2006, 18, 2740-2749.	3.2	1,600
49	Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physics and Chemistry of Solids, 2006, 67, 1106-1110.	1.9	380
50	Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon, 2005, 43, 87-94.	5.4	239
51	DRIFT study of deuterium-exchanged graphite oxide. Carbon, 2005, 43, 3186-3189.	5.4	535
52	Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 230, 23-35.	2.3	97
53	Graphite Oxide:  Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir, 2003, 19, 6050-6055.	1.6	1,151
54	Metal and semiconductor nanoparticles stabilized in ultrathin nanofilms and layer-structured materials., 2003, 5118, 441.		2

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Graphite Oxide Derived TiO2-Carbon Composites as Potential Electrocatalyst Supports. Topics in Catalysis, 0, , $1.$	1.3	2