Tamas Szabo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1524643/publications.pdf Version: 2024-02-01

TAMAS SZARO

#	Article	IF	CITATIONS
1	Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chemistry of Materials, 2006, 18, 2740-2749.	6.7	1,600
2	Graphite Oxide:  Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir, 2003, 19, 6050-6055.	3.5	1,151
3	DRIFT study of deuterium-exchanged graphite oxide. Carbon, 2005, 43, 3186-3189.	10.3	535
4	Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon, 2006, 44, 537-545.	10.3	456
5	Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physics and Chemistry of Solids, 2006, 67, 1106-1110.	4.0	380
6	Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon, 2005, 43, 87-94.	10.3	239
7	The structure of graphene oxide membranes in liquid water, ethanol and water–ethanol mixtures. Nanoscale, 2014, 6, 272-281.	5.6	180
8	Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. Journal of Physical Chemistry C, 2013, 117, 6842-6850.	3.1	163
9	Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon, 2013, 52, 171-180.	10.3	148
10	Colossal Pressureâ€Induced Lattice Expansion of Graphite Oxide in the Presence of Water. Angewandte Chemie - International Edition, 2008, 47, 8268-8271.	13.8	109
11	Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 230, 23-35.	4.7	97
12	Size-dependent aggregation of graphene oxide. Carbon, 2020, 160, 145-155.	10.3	86
13	Magnetic Nanoparticle Systems for Nanomedicine—A Materials Science Perspective. Magnetochemistry, 2020, 6, 2.	2.4	79
14	Pressure-Induced Insertion of Liquid Alcohols into Graphite Oxide Structure. Journal of the American Chemical Society, 2009, 131, 18445-18449.	13.7	74
15	Temperature dependent structural breathing of hydrated graphite oxide in H2O. Carbon, 2011, 49, 1894-1899.	10.3	74
16	Magnetic iron oxide/clay composites: effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles. Nanotechnology, 2007, 18, 285602.	2.6	55
17	Particle aggregation mechanisms in ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 9515-9524.	2.8	55
18	Layer-by-Layer Construction of Ultrathin Hybrid Films with Proteins and Clay Minerals. Journal of Physical Chemistry C, 2007, 111, 12730-12740.	3.1	45

TAMAS SZABO

#	Article	IF	CITATIONS
19	Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 230-239.	4.7	45
20	Systematic evaluation of different types of graphene oxide in respect to variations in their in-plane modulus. Carbon, 2017, 114, 700-705.	10.3	44
21	Magnetically Modified Single and Turbostratic Stacked Graphenes from Tris(2,2′-bipyridyl) Iron(II) Ion-Exchanged Graphite Oxide. Journal of Physical Chemistry B, 2008, 112, 14461-14469.	2.6	42
22	Hybrid Langmuir–Blodgett monolayers of graphite oxide nanosheets. Carbon, 2010, 48, 1676-1680.	10.3	39
23	Interaction of Biological Molecules with Clay Minerals: A Combined Spectroscopic and Sorption Study of Lysozyme on Saponite. Langmuir, 2012, 28, 611-619.	3.5	38
24	Adsorption of protamine and papain proteins on saponite. Clays and Clay Minerals, 2008, 56, 494-504.	1.3	37
25	Nanocarbons by High-Temperature Decomposition of Graphite Oxide at Various Pressures. Journal of Physical Chemistry C, 2009, 113, 11279-11284.	3.1	37
26	Optical properties of zinc peroxide and zinc oxide multilayer nanohybrid films. Applied Surface Science, 2009, 255, 6953-6962.	6.1	32
27	Doxorubicin Nanocarriers Based on Magnetic Colloids with a Bioâ€polyelectrolyte Corona and High Nonâ€linear Optical Response: Synthesis, Characterization, and Properties. Advanced Functional Materials, 2011, 21, 1465-1475.	14.9	29
28	Structural Breathing of Graphite Oxide Pressurized in Basic and Acidic Solutions Journal of Physical Chemistry Letters, 2011, 2, 309-313.	4.6	27
29	Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media. Interface Focus, 2016, 6, 20160068.	3.0	26
30	Tuning the Aggregation of Titanate Nanowires in Aqueous Dispersions. Langmuir, 2015, 31, 42-49.	3.5	25
31	Ion Specific Effects on the Stability of Halloysite Nanotube Colloids—Inorganic Salts versus Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 9757-9765.	2.6	24
32	Dendrimer-Stabilized Titanate Nanowire Dispersions as Potential Nanocarriers. Journal of Physical Chemistry C, 2015, 119, 24919-24926.	3.1	17
33	Dispersion Characteristics and Aggregation in Titanate Nanowire Colloids. ChemPlusChem, 2014, 79, 592-600.	2.8	15
34	Stability and dye inclusion of graphene oxide/polyelectrolyte layer-by-layer self-assembled films in saline, acidic and basic aqueous solutions. Carbon, 2017, 111, 350-357.	10.3	15
35	Optical properties of zinc oxide ultrathin hybrid films on silicon wafer prepared by layer-by-layer method. Thin Solid Films, 2008, 516, 3009-3014.	1.8	14
36	AFM Study of Smectites in Hybrid Langmuir-Blodgett Films: Saponite, Wyoming Bentonite, Hectorite, and Laponite. Clays and Clay Minerals, 2009, 57, 706-714.	1.3	12

TAMAS SZABO

#	Article	IF	CITATIONS
37	Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach. Journal of Magnetism and Magnetic Materials, 2017, 427, 280-288.	2.3	11
38	Graphite Oxide-TiO2 Nanocomposite Type Photocatalyst for Methanol Photocatalytic Reforming Reaction. Topics in Catalysis, 2018, 61, 1323-1334.	2.8	11
39	Intercalation and coordination of copper(II)–2,2′-bipyridine complexes into graphite oxide. Carbon, 2014, 72, 425-428.	10.3	10
40	Neurotoxic effects of subchronic intratracheal Mn nanoparticle exposure alone and in combination with other welding fume metals in rats. Inhalation Toxicology, 2017, 29, 227-238.	1.6	9
41	A Simple and Scalable Method for the Preparation of Magnetite/Graphene Oxide Nanocomposites under Mild Conditions. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.8	9
42	Effects of Size and Oxidation on the Nonlinear Optical Response and Optical Limiting of Graphene Oxide Sheets. Journal of Physical Chemistry C, 2020, 124, 11265-11273.	3.1	8
43	Immobilization of a Pd(II) complex on hydrophilic graphite oxide and its catalytic investigation in the Heck coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5565.	3.5	8
44	Synthesis and catalytic investigation of organophilic Pd/graphite oxide nanocomposites. Catalysis Communications, 2012, 17, 104-107.	3.3	7
45	Tunable Magnetic Hyperthermia Properties of Pristine and Mildly Reduced Graphene Oxide/Magnetite Nanocomposite Dispersions. Nanomaterials, 2020, 10, 2426.	4.1	7
46	Synthesis and transport studies of new enantiopure lipophilic crown ethers containing a diarylphosphinic acid unit. Tetrahedron: Asymmetry, 2014, 25, 1443-1449.	1.8	6
47	Synthesis and enantioselective transport studies of optically active lipophilic proton-ionizable crown ethers containing a diarylphosphinic acid unit. Tetrahedron: Asymmetry, 2015, 26, 650-656.	1.8	6
48	Nonactivated titanium-dioxide nanoparticles promote the growth ofChlamydia trachomatisand decrease the antimicrobial activity of silver nanoparticles. Journal of Applied Microbiology, 2017, 123, 1335-1345.	3.1	6
49	Striking analogies and dissimilarities between graphene oxides and humic acids: pH-dependent charging and colloidal stability. Journal of Molecular Liquids, 2020, 306, 112948.	4.9	6
50	Plasmonic structure generation by laser illumination of silica colloid spheres deposited onto prepatterned polymer-bimetal films. Applied Surface Science, 2009, 255, 5138-5145.	6.1	5
51	Catalytic investigation of PdCl2(TDA)2 immobilized on hydrophobic graphite oxide in the hydrogenation of 1-pentyne and the Heck coupling reaction. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 61-68.	1.7	5
52	Formulation of Multifunctional Material Dispersions. Chimia, 2014, 68, 454.	0.6	3
53	Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water. International Journal of Environmental Research and Public Health, 2022, 19, 3640.	2.6	3
54	Metal and semiconductor nanoparticles stabilized in ultrathin nanofilms and layer-structured		2

materials. , 2003, 5118, 441.

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Graphite Oxide Derived TiO2-Carbon Composites as Potential Electrocatalyst Supports. Topics in Catalysis, 0, , 1.	2.8	2