Petra Cameron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1524600/publications.pdf

Version: 2024-02-01

84 papers 5,924 citations

94433 37 h-index 71685 **76** g-index

86 all docs

86 docs citations

86 times ranked 8420 citing authors

#	Article	IF	CITATIONS
1	Using design of experiment to obtain a systematic understanding of the effect of synthesis parameters on the properties of perovskite nanocrystals. Reaction Chemistry and Engineering, 2021, 6, 709-719.	3.7	10
2	A soil microbial fuel cell-based biosensor for dissolved oxygen monitoring in water. Electrochimica Acta, 2020, 362, 137108.	5.2	24
3	Ceramic Soil Microbial Fuel Cells Sensors for Early Detection of Eutrophication., 2020, 60,.		2
4	Single Source Precursors for Calcium Sulfide (CaS) Deposition. European Journal of Inorganic Chemistry, 2019, 2019, 3962-3969.	2.0	6
5	Perovskiteâ€Based Optoelectronic Biointerfaces for Nonâ€Biasâ€Assisted Photostimulation of Cells. Advanced Materials Interfaces, 2019, 6, 1900758.	3.7	7
6	Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties. New Journal of Chemistry, 2019, 43, 992-1000.	2.8	15
7	Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nature Communications, 2019, 10, 2097.	12.8	124
8	Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy and Environmental Science, 2019, 12, 2264-2272.	30.8	168
9	A photosynthetic toxicity biosensor for water. Electrochimica Acta, 2019, 309, 392-401.	5.2	32
10	Effect of Electrode Properties on the Performance of a Photosynthetic Microbial Fuel Cell for Atrazine Detection. Frontiers in Energy Research, 2019, 7, .	2.3	29
11	Influence of bromide content on iodide migration in inverted MAPb(I _{1â^'x} Br _x) ₃ perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22604-22614.	10.3	42
12	Azulene – Thiophene – Cyanoacrylic acid dyes with donor-π-acceptor structures. Synthesis, characterisation and evaluation in dye-sensitized solar cells. Tetrahedron, 2018, 74, 2775-2786.	1.9	41
13	Molecular Interlayers in Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701544.	19.5	80
14	Residual Energy Harvesting from Light Transients Using Hematite as an Intrinsic Photocapacitor in a Symmetrical Cell. ACS Applied Energy Materials, 2018, 1, 38-42.	5.1	5
15	Screen printed carbon CsPbBr ₃ solar cells with high open-circuit photovoltage. Journal of Materials Chemistry A, 2018, 6, 18677-18686.	10.3	46
16	Continuous low temperature synthesis of MAPbX ₃ perovskite nanocrystals in a flow reactor. Reaction Chemistry and Engineering, 2018, 3, 640-644.	3.7	41
17	Role of cobalt–iron (oxy)hydroxide (CoFeO _x) as oxygen evolution catalyst on hematite photoanodes. Energy and Environmental Science, 2018, 11, 2972-2984.	30.8	120
18	Enhancing the hydrophobicity of perovskite solar cells using C18 capped CH ₃ NH ₃ Pbl ₃ nanocrystals. Journal of Materials Chemistry C, 2018, 6, 7149-7156.	5.5	14

#	Article	IF	Citations
19	Microseconds, milliseconds and seconds: deconvoluting the dynamic behaviour of planar perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 5959-5970.	2.8	200
20	Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochimica Acta, 2017, 231, 319-326.	5.2	81
21	Sulfur-Doped Cubic Mesostructured Titania Films for Use as a Solar Photocatalyst. Journal of Physical Chemistry C, 2017, 121, 9929-9937.	3.1	21
22	Measurement and modelling of dark current decay transients in perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 452-462.	5.5	64
23	Nanostructured WO ₃ photoanodes for efficient water splitting via anodisation in citric acid. RSC Advances, 2017, 7, 35221-35227.	3.6	26
24	Tetrabutylammonium cations for moisture-resistant and semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 22325-22333.	10.3	69
25	Azetidinium lead iodide for perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20658-20665.	10.3	53
26	What difference does a thiophene make? Evaluation of a 4,4′-bis(thiophene) functionalised 2,2′-bipyridyl copper(I) complex in a dye-sensitized solar cell. Dyes and Pigments, 2016, 134, 419-426.	3.7	22
27	Cs ⁺ incorporation into CH ₃ NH ₃ PbI ₃ perovskite: substitution limit and stability enhancement. Journal of Materials Chemistry A, 2016, 4, 17819-17827.	10.3	99
28	Hierarchical growth of TiO2 nanosheets on anodic ZnO nanowires for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2016, 325, 365-374.	7.8	19
29	pH-induced reversal of ionic diode polarity in 300 nm thin membranes based on a polymer of intrinsic microporosity. Electrochemistry Communications, 2016, 69, 41-45.	4.7	30
30	Solution processing of TiO2 compact layers for 3rd generation photovoltaics. Ceramics International, 2016, 42, 11989-11997.	4.8	8
31	An investigation of anode and cathode materials in photomicrobial fuel cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150080.	3.4	24
32	Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta, 2016, 192, 89-98.	5.2	120
33	Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells?. Energy and Environmental Science, 2016, 9, 1476-1485.	30.8	363
34	Halogen Effects on Ordering and Bonding of CH ₃ NH ₃ ⁺ in CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study. Journal of Physical Chemistry C, 2016, 120, 2509-2519.	3.1	188
35	Polymerization of low molecular weight hydrogelators to form electrochromic polymers. Chemical Communications, 2015, 51, 10427-10430.	4.1	24
36	Iron reduction by the cyanobacterium Synechocystis sp. PCC 6803. Bioelectrochemistry, 2015, 105, 103-109.	4.6	8

#	Article	IF	Citations
37	Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 3456-3465.	3.1	361
38	Hierarchical 3D ZnO nanowire structures via fast anodization of zinc. Journal of Materials Chemistry A, 2015, 3, 17569-17577.	10.3	55
39	Characterization of metal-free D-(Ï€-A)2 organic dye and its application as cosensitizer along with N719 dye for efficient dye-sensitized solar cells. Indian Journal of Physics, 2015, 89, 1041-1050.	1.8	14
40	A simple approach for the fabrication of perovskite solar cells in air. Journal of Power Sources, 2015, 297, 504-510.	7.8	59
41	Ordered Mesoporous Particles in Titania Films with Hierarchical Structure as Scattering Layers in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 22552-22559.	3.1	22
42	Perovskite solar cells and large area modules (100Âcm 2) based on an air flow-assisted PbI 2 blade coating deposition process. Journal of Power Sources, 2015, 277, 286-291.	7.8	332
43	One-step preparation of the BiVO4 film photoelectrode. Journal of Solid State Electrochemistry, 2015, 19, 31-35.	2.5	24
44	Free-Standing High Surface Area Titania Films Grown at the Air–Water Interface. Journal of Physical Chemistry C, 2014, 118, 26641-26648.	3.1	0
45	Varying numbers and positions of carboxylate groups on Ru dyes for dye-sensitized solar cells: uptake on TiO2, cell performance and cell stability. RSC Advances, 2014, 4, 10165-10175.	3.6	7
46	Trapping of redox-mediators at the surface of Chlorella vulgaris leads to error in measurements of cell reducing power. Physical Chemistry Chemical Physics, 2014, 16, 5810.	2.8	8
47	Air-stable photoconductive films formed from perylene bisimide gelators. Journal of Materials Chemistry C, 2014, 2, 5570-5575.	5.5	85
48	Electrochemically-triggered spatially and temporally resolved multi-component gels. Materials Horizons, 2014, 1, 241-246.	12.2	78
49	A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosensors and Bioelectronics, 2014, 62, 182-188.	10.1	196
50	Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells. RSC Advances, 2013, 3, 23361.	3.6	41
51	Surface nucleated growth of dipeptide fibres. Chemical Communications, 2013, 49, 8698.	4.1	20
52	Zinc oxide nanostructured films produced via anodization: a rational design approach. RSC Advances, 2013, 3, 25323.	3.6	33
53	Dipeptide hydrogel formation triggered by boronic acid–sugar recognition. Soft Matter, 2012, 8, 6788.	2.7	26
54	Two-Dimensional Photocurrent and Transmission Mapping of Aqueous Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 22253-22260.	3.1	9

#	Article	IF	CITATIONS
55	Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Physical Chemistry Chemical Physics, 2012, 14, 12221.	2.8	93
56	Peptide based low molecular weight gelators. Journal of Materials Chemistry, 2011, 21, 2024-2027.	6.7	129
57	Real-Time Optical Waveguide Measurements of Dye Adsorption into Nanocrystalline TiO ₂ Films with Relevance to Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 613-619.	3.1	21
58	Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy and Environmental Science, 2011, 4, 4690.	30.8	141
59	Sensing of pathogenic bacteria based on their interaction with supported bilayer membranes studied by impedance spectroscopy and surface plasmon resonance. Biosensors and Bioelectronics, 2011, 28, 227-231.	10.1	26
60	Porous ceramic anode materials for photo-microbial fuel cells. Journal of Materials Chemistry, 2011, 21, 18055.	6.7	75
61	The Interaction of Serum Albumin with Cholesterol Containing Lipid Vesicles. Journal of Fluorescence, 2010, 20, 371-376.	2.5	21
62	Directed Self-Assembly of Dipeptides to Form Ultrathin Hydrogel Membranes. Journal of the American Chemical Society, 2010, 132, 5130-5136.	13.7	119
63	Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials. Talanta, 2009, 78, 1102-1106.	5.5	9
64	Electrochemically Controlled Surface Plasmon Enhanced Fluorescence Response of Surface Immobilized CdZnSe Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 6003-6008.	3.1	20
65	A surface plasmon enhanced fluorescence sensor platform. New Journal of Chemistry, 2009, 33, 1466.	2.8	27
66	A Comparative Plasmonic Study of Nanoporous and Evaporated Gold Films. Plasmonics, 2008, 3, 13-20.	3.4	39
67	Surface plasmon resonance-enhanced fluorescence implementation of a single-step competition assay: Demonstration of fatty acid measurement using an anti-fatty acid monoclonal antibody and a Cy5-labeled fatty acid. Analytical Biochemistry, 2008, 377, 243-250.	2.4	5
68	Optical waveguide spectroscopy study of the transport and binding of cytochrome c in mesoporous titanium dioxide electrodes Journal of Materials Chemistry, 2008, 18, 4304.	6.7	21
69	Nanoscopic building blocks from polymers, metals, and semiconductors. , 2007, , .		1
70	Attachment and Phospholipase A2-Induced Lysis of Phospholipid Bilayer Vesicles to Plasma-Polymerized Maleic Anhydride/SiO2Multilayers. Langmuir, 2007, 23, 6294-6298.	3.5	18
71	Monitoring the Covalent Binding of Quantum Dots to Functionalized Gold Surfaces by Surface Plasmon Resonance Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 10313-10319.	3.1	11
72	Analysis of Photovoltage Decay Transients in Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2006, 110, 25504-25507.	2.6	83

#	Article	IF	CITATIONS
73	Determination of the Density and Energetic Distribution of Electron Traps in Dye-Sensitized Nanocrystalline Solar Cells. Journal of Physical Chemistry B, 2005, 109, 15429-15435.	2.6	131
74	How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?. Journal of Physical Chemistry B, 2005, 109, 7392-7398.	2.6	196
75	How Important is the Back Reaction of Electrons via the Substrate in Dye-Sensitized Nanocrystalline Solar Cells?. Journal of Physical Chemistry B, 2005, 109, 930-936.	2.6	221
76	Multi-timescale Monte Carlo method for simulating electron transport in dye-sensitized nanocrystalline solar cells. Journal of Materials Chemistry, 2005, 15, 2253.	6.7	11
77	Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coordination Chemistry Reviews, 2004, 248, 1447-1453.	18.8	180
78	Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells. Journal of Physical Chemistry B, 2003, 107, 14394-14400.	2.6	365
79	Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells:  A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 7536-7539.	2.6	358
80	Nanoporous Thin Films as Highly Versatile and Sensitive Waveguide Biosensors., 0,, 383-401.		5
81	Continuous Low Temperature Synthesis of MAPbX3 Perovskite Quantum Dots with Tuneable Luminescence., 0,,.		0
82	Running Perovskite Solar Cells Underwater - Light Driven Water Oxidation using Caesium Lead Bromide Solar Cells. , 0, , .		0
83	Multiscale Modelling of Perovskite Devices. , 0, , .		0
84	What can J–V hysteresis tell us about defect mediated phenomena in perovskite based solar cells?. , 0, ,		0