Alain Dufresne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523942/publications.pdf Version: 2024-02-01

		807	1341
322	53,874	118	223
papers	citations	h-index	g-index
383	383	383	26621
all docs	docs citations	times ranked	citing authors

ALAIN DUEDESNE

#	Article	lF	CITATIONS
1	Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9, 1050-1074.	1.5	2,222
2	Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules, 2005, 6, 612-626.	2.6	2,066
3	Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 2010, 45, 1-33.	1.7	2,042
4	Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 2012, 90, 735-764.	5.1	1,395
5	Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014, 59, 302-325.	2.6	1,298
6	Nanocellulose: a new ageless bionanomaterial. Materials Today, 2013, 16, 220-227.	8.3	1,244
7	Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2010, 2, 728-765.	2.0	1,080
8	Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 2012, 37, 93-99.	2.5	1,045
9	Starch Nanoparticles: A Review. Biomacromolecules, 2010, 11, 1139-1153.	2.6	860
10	Review: Current international research into cellulosic fibres and composites. Journal of Materials Science, 2001, 36, 2107-2131.	1.7	777
11	Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale, 2012, 4, 3274.	2.8	768
12	Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules, 2009, 10, 425-432.	2.6	720
13	Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 791-806.	2.4	685
14	Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 2012, 19, 855-866.	2.4	674
15	Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 2015, 22, 935-969.	2.4	624
16	Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules, 2000, 33, 8344-8353.	2.2	608
17	Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry, 2008, 18, 5002.	6.7	602
18	Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composites Science and Technology, 2007, 67, 1627-1639.	3.8	563

#	Article	IF	CITATIONS
19	Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 2011, 1-35.	1.2	499
20	Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies, 1995, 6, 351-355.	1.6	492
21	Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 1. Processing and Swelling Behavior. Biomacromolecules, 2003, 4, 657-665.	2.6	492
22	Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 2006, 13, 261-270.	2.4	483
23	Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 2009, 50, 4552-4563.	1.8	477
24	Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 2017, 132, 368-393.	1.8	475
25	Cellulose microfibrils from potato tuber cells: Processing and characterization of starch-cellulose microfibril composites. Journal of Applied Polymer Science, 2000, 76, 2080-2092.	1.3	466
26	Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 2008, 44, 2489-2498.	2.6	444
27	Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior. Macromolecules, 2001, 34, 2921-2931.	2.2	417
28	Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polymer Composites, 1996, 17, 604-611.	2.3	415
29	Optimization of the Preparation of Aqueous Suspensions of Waxy Maize Starch Nanocrystals Using a Response Surface Methodology. Biomacromolecules, 2004, 5, 1545-1551.	2.6	404
30	Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 2012, 88, 772-779.	5.1	402
31	Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale, 2014, 6, 5384-5393.	2.8	395
32	Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers. Biomacromolecules, 2002, 3, 609-617.	2.6	382
33	Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of Applied Polymer Science, 1997, 64, 1185-1194.	1.3	381
34	Improvement of Starch Film Performances Using Cellulose Microfibrils. Macromolecules, 1998, 31, 2693-2696.	2.2	381
35	From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites. Biomacromolecules, 2011, 12, 2456-2465.	2.6	365
36	Cellulose nanocrystals reinforced poly(oxyethylene). Polymer, 2004, 45, 4149-4157.	1.8	363

#	Article	IF	CITATIONS
37	Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 2009, 78, 422-431.	5.1	360
38	Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Polymer Science, 2018, 87, 197-227.	11.8	350
39	Highly Filled Bionanocomposites from Functionalized Polysaccharide Nanocrystals. Biomacromolecules, 2008, 9, 1974-1980.	2.6	343
40	New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate. Langmuir, 2010, 26, 402-411.	1.6	342
41	Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydrate Polymers, 2011, 83, 1740-1748.	5.1	334
42	Advances in cellulose nanomaterials. Cellulose, 2018, 25, 2151-2189.	2.4	329
43	Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension. Macromolecules, 2004, 37, 1386-1393.	2.2	324
44	Thermoplastic Starchâ^'Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules, 2006, 7, 531-539.	2.6	322
45	Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products, 2010, 32, 627-633.	2.5	314
46	Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites. Macromolecules, 2004, 37, 4313-4316.	2.2	294
47	Platelet Nanocrystals Resulting from the Disruption of Waxy Maize Starch Granules by Acid Hydrolysis. Biomacromolecules, 2003, 4, 1198-1202.	2.6	292
48	Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules, 2001, 34, 6527-6530.	2.2	287
49	Polysaccharide nano crystal reinforced nanocomposites. Canadian Journal of Chemistry, 2008, 86, 484-494.	0.6	286
50	TEMPO-Oxidized Nanocellulose Participating as Crosslinking Aid for Alginate-Based Sponges. ACS Applied Materials & Interfaces, 2012, 4, 4948-4959.	4.0	283
51	Crab Shell Chitin Whiskers Reinforced Natural Rubber Nanocomposites. 3. Effect of Chemical Modification of Chitin Whiskers. Biomacromolecules, 2003, 4, 1835-1842.	2.6	277
52	Nanocomposites of Chitin Whiskers fromRiftiaTubes and Poly(caprolactone). Macromolecules, 2002, 35, 2190-2199.	2.2	276
53	Polysaccharide Microcrystals Reinforced Amorphous Poly(β-hydroxyoctanoate) Nanocomposite Materials. Macromolecules, 1999, 32, 5765-5771.	2.2	274
54	Cellulose nanomaterial reinforced polymer nanocomposites. Current Opinion in Colloid and Interface Science, 2017, 29, 1-8.	3.4	264

#	Article	IF	CITATIONS
55	Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules, 2002, 3, 1101-1108.	2.6	262
56	Simple Method for the Melt Extrusion of a Cellulose Nanocrystal Reinforced Hydrophobic Polymer. ACS Macro Letters, 2012, 1, 236-240.	2.3	260
57	Characterization of a novel natural cellulosic fiber from Juncus effusus L Carbohydrate Polymers, 2017, 171, 163-172.	5.1	256
58	Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals. Molecules, 2010, 15, 4111-4128.	1.7	248
59	Transcrystallization in Mcl-PHAs/Cellulose Whiskers Composites. Macromolecules, 1999, 32, 7396-7401.	2.2	246
60	Mechanical Properties of Waxy Maize Starch Nanocrystal Reinforced Natural Rubber. Macromolecules, 2005, 38, 9161-9170.	2.2	237
61	Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate Polymers, 2015, 124, 337-346.	5.1	230
62	Investigation on the effect of cellulosic nanoparticles' morphology on the properties of natural rubber based nanocomposites. European Polymer Journal, 2010, 46, 609-620.	2.6	228
63	Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry, 2018, 20, 2428-2448.	4.6	228
64	Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Composites Science and Technology, 2008, 68, 1877-1885.	3.8	225
65	Physicoâ€Mechanical Properties of Biodegradable Starch Nanocomposites. Macromolecular Materials and Engineering, 2009, 294, 169-177.	1.7	225
66	Current State and New Trends in the Use of Cellulose Nanomaterials for Wastewater Treatment. Biomacromolecules, 2019, 20, 573-597.	2.6	224
67	Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 2. Mechanical Behavior. Biomacromolecules, 2003, 4, 666-674.	2.6	219
68	Processing and Structural Properties of Waxy Maize Starch Nanocrystals Reinforced Natural Rubber. Macromolecules, 2005, 38, 3783-3792.	2.2	215
69	Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers, 2011, 84, 203-210.	5.1	207
70	Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydrate Polymers, 2016, 151, 9-19.	5.1	207
71	Starch Nanocrystals with Large Chain Surface Modifications. Langmuir, 2006, 22, 4804-4810.	1.6	203
72	Comparing the Mechanical Properties of High Performances Polymer Nanocomposites from Biological Sources. Journal of Nanoscience and Nanotechnology, 2006, 6, 322-330.	0.9	203

#	Article	IF	CITATIONS
73	Effects of polymerâ€grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whiskerâ€ <i>graft</i> â€polycaprolactone. Journal of Applied Polymer Science, 2009, 113, 3417-3425.	1.3	200
74	Poly(É›-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties. Polymer, 2011, 52, 1532-1538.	1.8	200
75	Supramolecular Hydrogels from In Situ Host–Guest Inclusion between Chemically Modified Cellulose Nanocrystals and Cyclodextrin. Biomacromolecules, 2013, 14, 871-880.	2.6	193
76	Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydrate Polymers, 2014, 101, 1018-1026.	5.1	192
77	Physical and/or Chemical Compatibilization of Extruded Cellulose Nanocrystal Reinforced Polystyrene Nanocomposites. Macromolecules, 2013, 46, 5570-5583.	2.2	191
78	Nanofibers for Biomedical and Healthcare Applications. Macromolecular Bioscience, 2019, 19, e1800256.	2.1	187
79	Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. European Polymer Journal, 2013, 49, 3144-3154.	2.6	186
80	Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2010, 17, 1147-1158.	2.4	183
81	High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim) Tj ETQq1 1 0.784	1314 rgBT 2.4	/Oygrlock 10
82	Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. Journal of Applied Polymer Science, 2005, 98, 974-984.	1.3	178
83	Nanocomposite Polymer Electrolytes Based on Poly(oxyethylene) and Cellulose Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 10845-10852.	1.2	177
84	Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. Journal of Materials Science, 2002, 37, 3915-3923.	1.7	175
85	Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymers, 2014, 101, 878-885.	5.1	175
86	Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery. ACS Applied Materials & Interfaces, 2016, 8, 6880-6889.	4.0	174
87	Nanocellulose Processing Properties and Potential Applications. Current Forestry Reports, 2019, 5, 76-89.	3.4	174
88	Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Industrial Crops and Products, 2010, 32, 486-490.	2.5	173
89	Surface Chemical Modification of Waxy Maize Starch Nanocrystals. Langmuir, 2005, 21, 2425-2433.	1.6	170
90	New Nanocomposite Materials:Â Microcrystalline Starch Reinforced Thermoplastic. Macromolecules, 1996, 29, 7624-7626.	2.2	169

#	Article	IF	CITATIONS
91	Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of processing and modeling. Polymer Composites, 1997, 18, 198-210.	2.3	169
92	Cellulose nanocrystal: A promising toughening agent for unsaturated polyester nanocomposite. Polymer, 2015, 56, 346-357.	1.8	167
93	PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Materials	4.0	167
94	Nanocellulose in food packaging: A review. Carbohydrate Polymers, 2021, 255, 117479.	5.1	166
95	Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Composite Interfaces, 2000, 7, 117-131.	1.3	164
96	Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers. Macromolecules, 2004, 37, 4839-4844.	2.2	163
97	Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydrate Polymers, 2016, 153, 143-152.	5.1	155
98	Shear-Induced Orientation Phenomena in Suspensions of Cellulose Microcrystals, Revealed by Small Angle X-ray Scattering. Langmuir, 1999, 15, 6123-6126.	1.6	154
99	Polymer Grafting onto Starch Nanocrystals. Biomacromolecules, 2007, 8, 2916-2927.	2.6	153
100	Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer, 2008, 49, 1860-1870.	1.8	153
101	Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate Polymers, 2010, 81, 811-819.	5.1	153
102	Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydrate Polymers, 2014, 99, 74-83.	5.1	153
103	How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. European Polymer Journal, 2018, 108, 274-285.	2.6	150
104	Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Biomacromolecules, 2018, 19, 4442-4452.	2.6	146
105	A new quality index for benchmarking of different cellulose nanofibrils. Carbohydrate Polymers, 2017, 174, 318-329.	5.1	145
106	Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technology, 2005, 65, 1520-1526.	3.8	143
107	Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydrate Polymers, 2011, 84, 211-215.	5.1	140
108	Influence of native starch's properties on starch nanocrystals thermal properties. Carbohydrate Polymers, 2012, 87, 658-666.	5.1	140

#	Article	IF	CITATIONS
109	Physico-Chemical Characterization of Palm from <l>Phoenix Dactylifera</l> –L, Preparation of Cellulose Whiskers and Natural Rubber–Based Nanocomposites. Journal of Biobased Materials and Bioenergy, 2009, 3, 81-90.	0.1	139
110	Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydrate Polymers, 2013, 91, 711-717.	5.1	137
111	Structure and properties of starch nanocrystalâ€reinforced soy protein plastics. Polymer Composites, 2009, 30, 474-480.	2.3	134
112	Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating. ACS Applied Materials & amp; Interfaces, 2014, 6, 2734-2744.	4.0	134
113	Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 1906-1916.	3.2	132
114	Influence of botanic origin and amylose content on the morphology of starch nanocrystals. Journal of Nanoparticle Research, 2011, 13, 7193-7208.	0.8	126
115	Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers, 2013, 92, 2299-2305.	5.1	126
116	Review of recent research on flexible multifunctional nanopapers. Nanoscale, 2017, 9, 15181-15205.	2.8	126
117	Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Composite Interfaces, 2000, 7, 53-67.	1.3	124
118	Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohydrate Polymers, 2015, 122, 202-211.	5.1	124
119	Short palm tree fibers – Thermoset matrices composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1413-1422.	3.8	123
120	Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Journal of Membrane Science, 2013, 427, 218-229.	4.1	123
121	Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydrate Polymers, 2016, 137, 174-183.	5.1	120
122	Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L Carbohydrate Polymers, 2007, 68, 601-608.	5.1	119
123	Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology, 2008, 68, 193-201.	3.8	119
124	Enzymatic Pretreatment for Preparing Starch Nanocrystals. Biomacromolecules, 2012, 13, 132-137.	2.6	119
125	Structure and Mechanical Properties of Poly(lactic acid) Filled with (Starch) Tj ETQq1 1 0.784314 rgBT /Overlock 293, 763-770.	10 Tf 50 1.7	107 Td (nano 118
126	Structure and morphology of cladodes and spines of Opuntia ficus-indica. Cellulose extraction and characterisation. Carbohydrate Polymers, 2003, 51, 77-83.	5.1	117

#	Article	IF	CITATIONS
127	New waterborne epoxy coatings based on cellulose nanofillers. Macromolecular Symposia, 2001, 169, 211-222.	0.4	116
128	Obtaining nanofibers from curauÃ; and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose, 2013, 20, 1491-1500.	2.4	116
129	Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites. Journal of Applied Polymer Science, 2003, 87, 1302-1315.	1.3	113
130	Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals. Macromolecular Bioscience, 2007, 7, 1206-1216.	2.1	113
131	Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period. Carbohydrate Polymers, 2015, 132, 274-285.	5.1	113
132	Cellulose nanomaterials as green nanoreinforcements forÂpolymer nanocomposites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170040.	1.6	112
133	Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Journal of Applied Polymer Science, 2008, 109, 4065-4074.	1.3	111
134	Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydrate Polymers, 2015, 123, 99-104.	5.1	111
135	Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2011, 18, 57-65.	2.4	110
136	Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	109
137	Fluorescent Aerogels Based on Chemical Crosslinking between Nanocellulose and Carbon Dots for Optical Sensor. ACS Applied Materials & Interfaces, 2019, 11, 16048-16058.	4.0	109
138	Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 2020, 12, 22845-22890.	2.8	108
139	A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal <i>â€graftâ€</i> Poly(<i>ε</i> â€caprolactone). Macromolecular Materials and Engineering, 2009, 294, 59-67.	1.7	105
140	A comparison between the physico-chemical properties of tuber and cereal starches. Food Research International, 2009, 42, 976-982.	2.9	104
141	Review: nanoparticles and nanostructured materials in papermaking. Journal of Materials Science, 2018, 53, 146-184.	1.7	104
142	Highly Conducting and Solution-Processable Polyaniline Obtained via Protonation with a New Sulfonic Acid Containing Plasticizing Functional Groups. Macromolecules, 2000, 33, 2107-2113.	2.2	103
143	Ionic Compatibilization of Cellulose Nanocrystals with Quaternary Ammonium Salt and Their Melt Extrusion with Polypropylene. ACS Applied Materials & Interfaces, 2016, 8, 8755-8764.	4.0	103
144	Pilot-Scale Twin Screw Extrusion and Chemical Pretreatment as an Energy-Efficient Method for the Production of Nanofibrillated Cellulose at High Solid Content. ACS Sustainable Chemistry and Engineering, 2017, 5, 6524-6531.	3.2	102

#	Article	IF	CITATIONS
145	Starch Nanocrystal Fillers in an Acrylic Polymer Matrix. Macromolecular Symposia, 2005, 221, 95-104.	0.4	97
146	Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Industrial Crops and Products, 2015, 72, 175-182.	2.5	97
147	Clustering and percolation effects in microcrystalline starch-reinforced thermoplastic. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2211-2224.	2.4	96
148	Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochimica Acta, 2004, 49, 4667-4677.	2.6	95
149	Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Composites Science and Technology, 2008, 68, 3193-3201.	3.8	95
150	Preparation of poly(styreneâ€ <i>co</i> â€hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. Journal of Applied Polymer Science, 2009, 114, 2946-2955.	1.3	95
151	Evidence of Micro- and Nanoscaled Particles during Starch Nanocrystals Preparation and Their Isolation. Biomacromolecules, 2011, 12, 3039-3046.	2.6	93
152	Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids, 2015, 47, 146-157.	5.6	92
153	POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochimica Acta, 2005, 50, 3897-3903.	2.6	91
154	Extrusion of Polysaccharide Nanocrystal Reinforced Polymer Nanocomposites through Compatibilization with Poly(ethylene oxide). ACS Applied Materials & Interfaces, 2014, 6, 9365-9375.	4.0	91
155	Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. International Journal of Biological Macromolecules, 2020, 163, 1579-1590.	3.6	91
156	Mechanical Performance and Transparency of Nanocellulose Reinforced Polymer Nanocomposites. Macromolecular Materials and Engineering, 2014, 299, 560-568.	1.7	90
157	Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Advances, 2016, 6, 76017-76027.	1.7	90
158	Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). European Polymer Journal, 2011, 47, 2216-2227.	2.6	89
159	Microfibrillated cellulose from agricultural residues. Part I: Papermaking application. Industrial Crops and Products, 2016, 93, 161-174.	2.5	87
160	Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocolloids, 2018, 79, 416-427.	5.6	87
161	Steam-exploded residual softwood-filled polypropylene composites. , 1999, 74, 1962-1977.		85
162	Crystalline starch based nanoparticles. Current Opinion in Colloid and Interface Science, 2014, 19, 397-408.	3.4	85

#	Article	IF	CITATIONS
163	Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. International Journal of Biological Macromolecules, 2017, 98, 877-886.	3.6	85
164	The molecular structure of waxy maize starch nanocrystals. Carbohydrate Research, 2009, 344, 1558-1566.	1.1	81
165	In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. International Journal of Biological Macromolecules, 2020, 160, 538-547.	3.6	77
166	Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch/Staerke, 2017, 69, 1500307.	1.1	74
167	Extraction and characterization of vascular bundle and fiber strand from date palm rachis as potential bio-reinforcement in composite. Carbohydrate Polymers, 2019, 222, 114997.	5.1	74
168	Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose, 2011, 18, 957-973.	2.4	72
169	Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry. Polymer Chemistry, 2015, 6, 4385-4395.	1.9	72
170	Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochimica Acta, 2010, 55, 5186-5194.	2.6	71
171	Structure and properties of new thermoforming bionanocomposites based on chitin whiskerâ€ <i>graft</i> â€polycaprolactone. Journal of Applied Polymer Science, 2009, 112, 2830-2837.	1.3	70
172	A review of cellulose nanocrystals and nanocomposites. Tappi Journal, 2011, 10, 9-16.	0.2	70
173	High-Adsorption, Self-Extinguishing, Thermal, and Acoustic-Resistance Aerogels Based on Organic and Inorganic Waste Valorization from Cellulose Nanocrystals and Red Mud. ACS Sustainable Chemistry and Engineering, 2018, 6, 7168-7180.	3.2	68
174	Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polymer Degradation and Stability, 2012, 97, 2021-2026.	2.7	66
175	Electric Field Alignment of Nanofibrillated Cellulose (NFC) in Silicone Oil: Impact on Electrical Properties. ACS Applied Materials & Interfaces, 2014, 6, 9418-9425.	4.0	63
176	Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals. International Journal of Biological Macromolecules, 2017, 102, 241-247.	3.6	63
177	Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. Nanomaterials, 2021, 11, 3008.	1.9	63
178	Cellulose-Based Composites and Nanocomposites. , 2008, , 401-418.		62
179	Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose, 2012, 19, 843-853.	2.4	62
180	Short Palm Tree Fibers Polyolefin Composites: Effect of Filler Content and Coupling Agent on Physical Properties. Macromolecular Materials and Engineering, 2008, 293, 140-148.	1.7	61

#	Article	IF	CITATIONS
181	Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydrate Polymers, 2016, 136, 945-954.	5.1	61
182	Preparation of Cellulose Nanocrystal-Reinforced Poly(lactic acid) Nanocomposites through Noncovalent Modification with PLLA-Based Surfactants. ACS Omega, 2017, 2, 2678-2688.	1.6	61
183	Poly(3-hydroxybutyrate) and Poly(3-hydroxyoctanoate) Blends: Morphology and Mechanical Behavior. Macromolecules, 2000, 33, 2998-3008.	2.2	60
184	Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Composite Interfaces, 2003, 10, 369-387.	1.3	60
185	Surface functionalization of cellulose by grafting oligoether chains. Materials Chemistry and Physics, 2010, 120, 438-445.	2.0	56
186	Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: Effect of the silane content. Polymer Engineering and Science, 2011, 51, 62-70.	1.5	56
187	Reinforcement of Natural Rubber: The Use of <i>in Situ</i> Regenerated Cellulose from Alkaline–Urea–Aqueous System. Macromolecules, 2017, 50, 7211-7221.	2.2	55
188	Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. European Polymer Journal, 2015, 69, 208-223.	2.6	54
189	Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: Effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer, 2015, 71, 51-59.	1.8	54
190	Gamma-ray crosslinking of poly(3-hydroxyoctanoate-co-undecenoate). International Journal of Biological Macromolecules, 2001, 29, 73-82.	3.6	53
191	Reinforcing Mechanisms of Starch Nanocrystals in a Nonvulcanized Natural Rubber Matrix. Biomacromolecules, 2011, 12, 1487-1493.	2.6	52
192	Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. Journal of Materials Science, 2015, 50, 7908-7918.	1.7	52
193	Nanofibrillar cellulose from Posidonia oceanica: Properties and morphological features. Industrial Crops and Products, 2015, 72, 97-106.	2.5	51
194	Waxy Maize Starch Nanocrystals as Filler in Natural Rubber. Macromolecular Symposia, 2006, 233, 132-136.	0.4	50
195	Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Advances, 2016, 6, 66224-66232.	1.7	50
196	Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene) Tj ETQq0 0 0 1 2284-2297.	gBT /Over 2.4	lock 10 Tf 50 50
197	Multifunctional Nanocellulose/Carbon Nanotube Composite Aerogels for High-Efficiency Electromagnetic Interference Shielding. ACS Sustainable Chemistry and Engineering, 2022, 10, 2397-2408.	3.2	49
198	High performance nanocomposite polymer electrolytes. Composite Interfaces, 2006, 13, 545-559.	1.3	48

#	Article	IF	CITATIONS
199	Composite and nanocomposite films based on amaranth biopolymers. Food Hydrocolloids, 2018, 74, 159-167.	5.6	48
200	Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals. Carbohydrate Polymers, 2018, 202, 621-630.	5.1	48
201	Investigation of the Date Palm Fiber for Green Composites Reinforcement: Thermo-physical and Mechanical Properties of the Fiber. Journal of Natural Fibers, 2021, 18, 717-734.	1.7	48
202	Biodegradable starch-based composites: effect of micro and nanoreinforcements on composite properties. Journal of Materials Science, 2014, 49, 4513-4521.	1.7	46
203	Polyethylene cellulose nanofibrils nanocomposites. Carbohydrate Polymers, 2017, 173, 50-56.	5.1	46
204	Improved redispersibility of cellulose nanofibrils in water using maltodextrin as a green, easily removable and non-toxic additive. Food Hydrocolloids, 2018, 79, 30-39.	5.6	46
205	Morphology, phase continuity and mechanical behaviour of polyamide 6/chitosan blends. Polymer, 1999, 40, 1657-1666.	1.8	44
206	New waterborne polyurethane-based nanocomposites reinforced with low loading levels of chitin whisker. EXPRESS Polymer Letters, 2011, 5, 362-373.	1.1	44
207	Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica : The rheological aspect. Carbohydrate Polymers, 2015, 134, 664-672.	5.1	44
208	Ceramic membrane filtration for isolating starch nanocrystals. Carbohydrate Polymers, 2011, 86, 1565-1572.	5.1	43
209	A comparative study on characteristics of nanocellulose reinforced thermoplastic starch biofilms prepared with different techniques. Nordic Pulp and Paper Research Journal, 2014, 29, 41-45.	0.3	41
210	Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Research on Chemical Intermediates, 2015, 41, 4293-4310.	1.3	41
211	Cellulose nanocrystal as ecofriendly stabilizer for emulsion polymerization and its application for waterborne adhesive. Carbohydrate Polymers, 2020, 229, 115504.	5.1	40
212	Double-Network Formation and Mechanical Enhancement of Reducing End-Modified Cellulose Nanocrystals to the Thermoplastic Elastomer Based on Click Reaction and Bulk Cross-Linking. Macromolecules, 2019, 52, 5894-5906.	2.2	39
213	Synergism Effect of Montmorillonite and Cellulose Whiskers on the Mechanical and Barrier Properties of Natural Rubber Composites. Macromolecular Materials and Engineering, 2011, 296, 760-769.	1.7	38
214	Production and Characterisation of Cellulose and Nano-Crystalline Cellulose from Kenaf Core Wood. BioResources, 2012, 8, .	0.5	38
215	"Green polyethylene―and curauá cellulose nanocrystal based nanocomposites: Effect of vegetable oils as coupling agent and processing technique. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1010-1019.	2.4	37
216	Preparation and Characterization of a Poly(β-hydroxyoctanoate) Latex Produced byPseudomonasoleovorans. Macromolecules, 1998, 31, 6426-6433.	2.2	36

#	Article	IF	CITATIONS
217	Nanocellulose-Based Composites. , 2011, , 179-213.		36
218	Dwarf Cavendish as a Source of Natural Fibers in Poly(propylene)-Based Composites. Macromolecular Materials and Engineering, 2006, 291, 16-26.	1.7	35
219	Polycaprolactone/modified bagasse whisker nanocomposites with improved moistureâ€barrier and biodegradability properties. Journal of Applied Polymer Science, 2012, 125, E10.	1.3	35
220	Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)- co -(2-ethylhexyl acrylate)] latex particles. European Polymer Journal, 2017, 91, 297-306.	2.6	33
221	Facile modification of organoclay and its effect on the compatibility and properties of novel biodegradable PBE/PBAT nanocomposites. European Polymer Journal, 2017, 87, 188-199.	2.6	33
222	Elastomer Reinforced with Regenerated Chitin from Alkaline/Urea Aqueous System. ACS Applied Materials & Interfaces, 2017, 9, 26460-26467.	4.0	33
223	Influence of the Botanic Origin of Starch Nanocrystals on the Morphological and Mechanical Properties of Natural Rubber Nanocomposites. Macromolecular Materials and Engineering, 2012, 297, 969-978.	1.7	32
224	Lignocellulosic Flour from Cladodes ofOpuntia ficus-indica Reinforced Poly(propylene) Composites. Macromolecular Materials and Engineering, 2004, 289, 855-863.	1.7	31
225	Optimization of the batch preparation of starch nanocrystals to reach daily timeâ€scale. Starch/Staerke, 2012, 64, 489-496.	1.1	31
226	Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing. Langmuir, 2016, 32, 10093-10103.	1.6	31
227	Cellulose nanomaterials: size and surface influence on the thermal and rheological behavior. Polimeros, 2018, 28, 93-102.	0.2	31
228	Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO. Rheologica Acta, 2010, 49, 529-540.	1.1	30
229	First Evidence for the Presence of Weddellite Crystallites in Opuntia ficus indica Parenchyma. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 812-816.	0.6	29
230	Natural Fibers, Bio- and Nanocomposites. International Journal of Polymer Science, 2011, 2011, 1-2.	1.2	29
231	Extrusion of Nanocelluloseâ€Reinforced Nanocomposites Using the Dispersed Nanoâ€Objects Protective Encapsulation (DOPE) Process. Macromolecular Materials and Engineering, 2011, 296, 984-991.	1.7	29
232	Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydrate Polymers, 2018, 181, 1061-1070.	5.1	28
233	Comparative Sustainability Assessment of Starch Nanocrystals. Journal of Polymers and the Environment, 2013, 21, 71-80.	2.4	27
234	Cellulose nanocrystals-reinforced core-shell hydrogels for sustained release of fertilizer and water retention. International Journal of Biological Macromolecules, 2022, 216, 24-31.	3.6	27

#	Article	IF	CITATIONS
235	Processing of Polymer Nanocomposites Reinforced with Cellulose Nanocrystals: A Challenge. International Polymer Processing, 2012, 27, 557-564.	0.3	25
236	Quantitative Analysis of Compatibility and Dispersibility in Nanocellulose-Reinforced Composites: Hansen Solubility and Raman Mapping. ACS Nano, 2021, 15, 20148-20163.	7.3	25
237	Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials. Starch/Staerke, 2022, 74, .	1.1	25
238	Green bionanocomposites from high-elasticity "soft―polyurethane and high-crystallinity "rigid― chitin nanocrystals with controlled surface acetylation. RSC Advances, 2014, 4, 49098-49107.	1.7	24
239	A novel interpenetrating polymer network of natural rubber/regenerated cellulose made by simple co-precipitation. Materials Letters, 2017, 205, 202-205.	1.3	24
240	Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials, 2020, 13, 926.	1.3	24
241	Cellulose-polyamide 66 blends. Part II: Mechanical behavior. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2109-2124.	2.4	23
242	Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 26-30.	2.3	22
243	Investigation of the date palm fiber for green composites reinforcement: Quasi-static and fatigue characterization of the fiber. Industrial Crops and Products, 2020, 146, 112135.	2.5	22
244	Crosslinking and characterization of commercially available poly(VDF-co-HFP) copolymers with 2,4,4-trimethyl-1,6-hexanediamine. European Polymer Journal, 2006, 42, 2549-2561.	2.6	21
245	Cellulose-reinforced composites: From micro-to nanoscale. Polimeros, 2010, 20, 1-10.	0.2	21
246	Effects of starch nanocrystalâ€ <i>graft</i> â€polycaprolactone on mechanical properties of waterborne polyurethaneâ€based nanocomposites. Journal of Applied Polymer Science, 2009, 111, 619-627.	1.3	20
247	Alkali Treatment Effect on Physicochemical and Tensile Properties of Date Palm Rachis Fibers. Journal of Natural Fibers, 2022, 19, 3770-3787.	1.7	20
248	CHAPTER 1. Nanocellulose: Potential Reinforcement in Composites. RSC Green Chemistry, 2012, , 1-32.	0.0	19
249	Effect of the Fiber Size on the Physicochemical and Mechanical Properties of Composites of Epoxy and Date Palm Tree Fibers. Macromolecular Materials and Engineering, 2008, 293, 684-691.	1.7	18
250	Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites. International Journal of Biological Macromolecules, 2016, 91, 1040-1044.	3.6	18
251	Cellulose Nanocrystals versus Microcrystalline Cellulose as Reinforcement of Lignopolyurethane Matrix. Fibers, 2020, 8, 21.	1.8	18
252	A study of interphase in model composites via low temperature thermo stimulated creep spectroscopy. Polymer, 1993, 34, 3173-3178.	1.8	17

Alain Dufresne

#	Article	IF	CITATIONS
253	Toughened polyester cellulose nanocomposites: Effects of cellulose nanocrystals and liquid epoxidized natural rubber on morphology and mechanical properties. Industrial Crops and Products, 2015, 72, 125-132.	2.5	17
254	Humidity-Sensitive and Conductive Nanopapers from Plant-Derived Proteins with a Synergistic Effect of Platelet-Like Starch Nanocrystals and Sheet-Like Graphene. ACS Sustainable Chemistry and Engineering, 2017, 5, 9431-9440.	3.2	17
255	Opuntia (Cactaceae) Fibrous Network-reinforced Composites: Thermal, Viscoelastic, Interfacial Adhesion and Biodegradation Behavior. Fibers and Polymers, 2020, 21, 2353-2363.	1.1	17
256	Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber. Carbohydrate Polymers, 2022, 278, 118954.	5.1	17
257	Cellulose-Based Composites and Nanocomposites. , 2013, , 153-169.		16
258	Simultaneous enhancement of elasticity and strength of Al2O3-based ceramics body from cellulose nanocrystals via gel-casting process. Carbohydrate Polymers, 2018, 181, 111-118.	5.1	16
259	Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance. Cellulose, 2018, 25, 7127-7142.	2.4	16
260	Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning. Journal of the Korean Wood Science and Technology, 2014, 42, 119-129.	0.8	16
261	All starch nanocomposite coating for barrier material. Journal of Applied Polymer Science, 2014, 131, .	1.3	15
262	Microfibrillated cellulose from agricultural residues. Part II: Strategic evaluation and market analysis for MFCE30. Industrial Crops and Products, 2016, 93, 175-185.	2.5	15
263	Velocity, stress and concentration fields revealed by micro-PIV and SAXS within concentration polarization layers during cross-flow ultrafiltration of colloidal Laponite clay suspensions. Journal of Membrane Science, 2019, 578, 69-84.	4.1	15
264	Study of effect of old corrugated cardboard in properties of polypropylene composites: Study of mechanical properties, thermal behavior, and morphological properties. Journal of Vinyl and Additive Technology, 2016, 22, 231-238.	1.8	14
265	Thick Polyvinyl Alcohol Films Reinforced with Cellulose Nanocrystals for Coating Applications. ACS Applied Nano Materials, 2021, 4, 8015-8025.	2.4	14
266	Mechanical characterization of mortar reinforced by date palm mesh fibers: Experimental and statistical analysis. Construction and Building Materials, 2021, 300, 124067.	3.2	14
267	Enhancing toughness, healing and reprocessability of sustainable epoxy vitrimer composites by PEG-assisted regenerated cellulose. Industrial Crops and Products, 2021, 170, 113804.	2.5	14
268	Cellulose-copolyamide 6,69 blends. Journal of Applied Polymer Science, 1996, 59, 1995-2007.	1.3	13
269	Preparation and evaluation of oxygen scavenging nanocomposite films incorporating cellulose nanocrystals and Pd nanoparticles in poly(ethylene-co-vinyl alcohol). Cellulose, 2019, 26, 7237-7251.	2.4	13

270 Emerging Applications of Cellulose Nanofibers. , 2019, , 1131-1156.

Alain Dufresne

#	Article	IF	CITATIONS
271	Emerging Applications of Cellulose Nanofibers. , 2018, , 1-26.		12
272	Nanocelluloses from phormium (Phormium tenax) fibers. Cellulose, 2020, 27, 4975-4990.	2.4	12
273	Thermo-stimulated creep study of the $\hat{I}\pm$ retardation mode in epoxy-glass beads composites. Polymer Composites, 1993, 14, 238-246.	2.3	11
274	Thermo-stimulated creep analysis on the effect of water in glass bead-reinforced composites. Polymer, 1995, 36, 4417-4424.	1.8	11
275	Thermomechanical Studies of Poly(aniline)/Poly(methyl methacrylate) Blends:Â Relationship with Conducting Properties. Macromolecules, 2001, 34, 8143-8148.	2.2	11
276	Starch-based nanocomposites. , 2009, , 205-251.		11
277	Impregnation of paper with cellulose nanocrystal reinforced polyvinyl alcohol: synergistic effect of infrared drying and CNC content on crystallinity. Soft Matter, 2018, 14, 9425-9435.	1.2	10
278	Regulating surface sulfonation on cellulose nanocrystals and self-assembly behaviors. Chemical Communications, 2020, 56, 10958-10961.	2.2	10
279	Cellulose nanocrystalâ€mediated assembly of graphene oxide in natural rubber nanocomposites with high electrical conductivity. Journal of Applied Polymer Science, 2021, 138, 51460.	1.3	10
280	Nanocellulose: Common Strategies for Processing of Nanocomposites. ACS Symposium Series, 2017, , 203-225.	0.5	9
281	Structure, Rheological Behavior, and <i>in Situ</i> Local Flow Fields of Cellulose Nanocrystal Dispersions during Cross-Flow Ultrafiltration. ACS Sustainable Chemistry and Engineering, 2019, 7, 10679-10689.	3.2	9
282	Film thickness limits of a buckling-based method to determine mechanical properties of polymer coatings. Journal of Colloid and Interface Science, 2021, 582, 227-235.	5.0	8
283	A gradient poly(vinyl alcohol)/polysaccharides composite film towards robust and fast stimuli-responsive actuators by interface co-precipitation. Journal of Materials Chemistry A, 2021, 9, 22973-22981.	5.2	8
284	Production and Mechanical Characterisation of TEMPO-Oxidised Cellulose Nanofibrils/β-Cyclodextrin Films and Cryogels. Molecules, 2020, 25, 2381.	1.7	8
285	Chain flow in thermo-stimulated creep experiments: application to poly(methyl methacrylate). Polymer, 1996, 37, 2359-2365.	1.8	7
286	Preparation of cellulose nanocomposites. , 2011, , 82-116.		7
287	Polymer nanocomposites reinforced with polysaccharide nanocrystals. International Journal of Nanotechnology, 2011, 8, 795.	0.1	7
288	Starch and Nanoparticle. , 2015, , 417-449.		7

#	Article	IF	CITATIONS
289	Insights into Stereocomplexation of Poly(lactic acid) Materials: Evolution of Interaction between Enantiomeric Chains and Its Role in Conformational Transformation in Racemic Blends. ACS Applied Polymer Materials, 2022, 4, 5891-5900.	2.0	7
290	Cellulose nanoparticles as reinforcement in polymer nanocomposites. , 2012, , 131-163.		6
291	5. Chemical modification of nanocellulose. , 2017, , 221-286.		6
292	Adsorption characterization of various modified \hat{l}^2 -cyclodextrins onto TEMPO-oxidized cellulose nanofibril membranes and cryogels. Sustainable Chemistry and Pharmacy, 2021, 24, 100523.	1.6	6
293	Alternative modification by grafting in bamboo cellulose nanofibrils: A potential option to improve compatibility and tunable surface energy in bionanocomposites. International Journal of Biological Macromolecules, 2022, 211, 626-638.	3.6	6
294	Influence of the compensation phenomena of polymeric matrix composites. Journal of Thermal Analysis, 1993, 40, 705-710.	0.7	5
295	New counterion-plasticized polyaniline with improved mechanical and thermal properties : comparison with PANI-CSA. Synthetic Metals, 2001, 119, 445-446.	2.1	5
296	Development of an integrated process to produce CNFs and lignin and its potential applications for agrochemical delivery. Cellulose, 2021, 28, 10891-10904.	2.4	5
297	2. Preparation of microfibrillated cellulose. , 2017, , 47-116.		3
298	3. Preparation of cellulose nanocrystals. , 2017, , 117-192.		3
299	7. Processing of nanocellulose-based materials. , 2017, , 351-418.		3
300	Influence of Cellulose Nanofillers on the Rheological Properties of Polymer Electrolytes. AIP Conference Proceedings, 2008, , .	0.3	2
301	Beneficial Effect of Compatibilization on the Aging of Celluloseâ€Reinforced Biopolymer Blends. Macromolecular Materials and Engineering, 2010, 295, 774-781.	1.7	2
302	Novel Nanocomposites Reinforced with Polysaccharide (Starch) Nanocrystals: From Interfacial Ring-Opening Polymerization to Melt-Processing Implementation. ACS Symposium Series, 2012, , 257-268.	0.5	2
303	Absorption of Siderite Within a Chemically Modified Poly(lactic acid) Based Composite Material for Agricultural Applications. Journal of Polymers and the Environment, 2018, 26, 2173-2181.	2.4	2
304	Antimicrobial activity of bleached cattail fibers (<scp><i>Typha domingensis</i></scp>) impregnated with silver nanoparticles and benzalkonium chloride. Journal of Applied Polymer Science, 2021, 138, 50885.	1.3	2
305	Nanopolysaccharides in Environmental Treatments. Springer Series in Biomaterials Science and Engineering, 2019, , 255-282.	0.7	2
306	Effect of alkali surface treatment and compatibilizer agent on tensile and morphological properties of date palm fibersâ€based high density polyethylene biocomposites. Polymer Composites, 2022, 43, 7211-7221.	2.3	2

#	Article	IF	CITATIONS
307	Macromol. Mater. Eng. 11/2011. Macromolecular Materials and Engineering, 2011, 296, .	1.7	1
308	Nanocellulose: Biomedical Nanomaterial Applications. , 2015, , 5077-5100.		1
309	6. Rheological behavior of nanocellulose suspensions and self-assembly. , 2017, , 287-350.		1
310	11. Other polysaccharide nanocrystals. , 2017, , 577-620.		1
311	Current Challenges in Melt Extrusion of Cellulose-Based Nanocomposites. ACS Symposium Series, 2018, , 137-152.	0.5	1
312	Starch and Nanoparticle. , 2014, , 1-28.		1
313	A Statistical Analysis of Size, Shape and Tensile Properties of Fibres Extracted from Date Palm (Phoenix) Tj ETQq1	1 0.7843	14 rgBT /Ove
314	Donut-Shaped Microparticles Prepared from Different C-Type Starch Sources: Characterization and Encapsulation of Gallic Acid. ACS Food Science & Technology, 2022, 2, 862-871.	1.3	1
315	Bionanocomposites: Stateâ€ofâ€theâ€Art Materials. Plastics Engineering, 2014, 70, 38-43.	0.1	0
316	Starch Nanocrystals. Materials and Energy, 2014, , 89-103.	2.5	0
317	Cellulose Nanomaterials. , 2015, , 1-22.		0
318	10. Swelling and barrier properties. , 2017, , 531-576.		0
319	8. Thermal properties. , 2017, , 419-470.		0
320	9. Mechanical properties of nanocellulose-based nanocomposites. , 2017, , 471-530.		0
321	Preface. Carbohydrate Polymers, 2018, 195, 642.	5.1	0
322	Dissolution and regeneration of cellulose from N-methylmorpholine N-oxide and fabrication of nanofibrillated cellulose. Biomass Conversion and Biorefinery, 2024, 14, 5399-5410.	2.9	0