Yong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523907/publications.pdf

Version: 2024-02-01

101384 161609 131 4,010 36 54 h-index citations g-index papers 131 131 131 4221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Applied Microbiology and Biotechnology, 2015, 99, 3291-3302.	1.7	224
2	Application of Multivariate Statistical Methods to Water Quality Assessment of the Watercourses in Northwestern New Territories, Hong Kong. Environmental Monitoring and Assessment, 2007, 132, 1-13.	1.3	176
3	Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference. Water Research, 2017, 116, 231-240.	5.3	160
4	Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong. Marine Pollution Bulletin, 2007, 54, 745-756.	2.3	121
5	Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: A water quality modeling based statistical analysis approach. Science of the Total Environment, 2014, 468-469, 219-227.	3.9	112
6	An integrated GIS-based analysis system for land-use management of lake areas in urban fringe. Landscape and Urban Planning, 2007, 82, 233-246.	3.4	104
7	Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Applied Microbiology and Biotechnology, 2016, 100, 4161-4175.	1.7	92
8	Water quality modeling for load reduction under uncertainty: A Bayesian approach. Water Research, 2008, 42, 3305-3314.	5.3	71
9	A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China). Environmental Pollution, 2013, 177, 13-21.	3.7	69
10	Simulate the forecast capacity of a complicated water quality model using the long short-term memory approach. Journal of Hydrology, 2020, 581, 124432.	2.3	64
11	An integrated system dynamics model developed for managing lake water quality at the watershed scale. Journal of Environmental Management, 2015, 155, 11-23.	3.8	61
12	Analysis of cyanobacteria bloom in the Waihai part of Dianchi Lake, China. Ecological Informatics, 2012, 10, 37-48.	2.3	57
13	Exploring the influence of lake water chemistry on chlorophyll a: A multivariate statistical model analysis. Ecological Modelling, 2010, 221, 681-688.	1.2	56
14	Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes. Science of the Total Environment, 2019, 662, 863-872.	3.9	55
15	Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau. Applied Microbiology and Biotechnology, 2015, 99, 2371-2381.	1.7	52
16	Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China. Journal of Environmental Sciences, 2012, 24, 1355-1363.	3.2	51
17	Bacterioplankton communities in a high-altitude freshwater wetland. Annals of Microbiology, 2014, 64, 1405-1411.	1.1	48
18	Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Applied Microbiology and Biotechnology, 2014, 98, 5697-5707.	1.7	48

#	Article	IF	CITATIONS
19	Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?. Journal of Hydrology, 2016, 542, 281-291.	2.3	48
20	Controlling embedded carbon emissions of sectors along the supply chains: A perspective of the power-of-pull approach. Applied Energy, 2017, 206, 1544-1551.	5.1	47
21	Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no-effect concentrations (PNECs) and ecological risks by three methods. Environmental Pollution, 2020, 256, 113458.	3.7	47
22	Mixed uncertainty analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient air of Beijing. Journal of Environmental Sciences, 2008, 20, 505-512.	3.2	46
23	Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction and uncertainty analysis for the Lake Dianchi Basin, China. Hydrological Processes, 2014, 28, 521-533.	1.1	46
24	Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction. Journal of Hydrology, 2018, 562, 577-588.	2.3	46
25	Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. Ecotoxicology and Environmental Safety, 2014, 106, 1-5.	2.9	45
26	Spatio-temporal shifts in the archaeal community of a constructed wetland treating river water. Science of the Total Environment, 2017, 605-606, 269-275.	3.9	42
27	Gulf of Mexico Hypoxia: Exploring Increasing Sensitivity to Nitrogen Loads. Environmental Science & Samp; Technology, 2010, 44, 5836-5841.	4.6	41
28	Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model. Ecological Modelling, 2015, 313, 137-148.	1.2	41
29	Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States. Microbial Ecology, 2016, 71, 257-265.	1.4	40
30	Effects of drought and flood on crop production in China across 1949–2015: spatial heterogeneity analysis with Bayesian hierarchical modeling. Natural Hazards, 2018, 92, 525-541.	1.6	40
31	An Optimization Method Based on Scenario Analysis for Watershed Management Under Uncertainty. Environmental Management, 2007, 39, 678-690.	1.2	38
32	A Bayesian hierarchical model for urban air quality prediction under uncertainty. Atmospheric Environment, 2008, 42, 8464-8469.	1.9	38
33	Predicting lake water quality responses to load reduction: a three-dimensional modeling approach for total maximum daily load. International Journal of Environmental Science and Technology, 2014, 11, 423-436.	1.8	38
34	Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology, 2014, 15, 249-256.	0.8	38
35	Integrated SWAT model and statistical downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1193-1210.	1.9	38
36	Temporal and Spatial Dynamics of Archaeal Communities in Two Freshwater Lakes at Different Trophic Status. Frontiers in Microbiology, 2016, 7, 451.	1.5	37

#	Article	IF	Citations
37	Uncertainty-based analysis on water quality response to water diversions for Lake Chenghai: A multiple-pattern inverse modeling approach. Journal of Hydrology, 2014, 514, 1-14.	2.3	36
38	Remote-sensing disturbance detection index to identify spatio-temporal varying flood impact on crop production. Agricultural and Forest Meteorology, 2019, 269-270, 180-191.	1.9	36
39	An Interval Fuzzy Multiobjective Watershed Management Model for the Lake Qionghai Watershed, China. Water Resources Management, 2006, 20, 701-721.	1.9	35
40	Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling. Journal of Hydrology, 2018, 559, 56-70.	2.3	35
41	Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nature Geoscience, 2022, 15, 464-468.	5.4	35
42	Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes. Microbial Ecology, 2017, 73, 285-295.	1.4	34
43	Seasonal and spatial dynamics of denitrification rate and denitrifier community in constructed wetland treating polluted river water. International Biodeterioration and Biodegradation, 2018, 126, 143-151.	1.9	34
44	Bioaccumulation, trophic transfer, and human health risk of quinolones antibiotics in the benthic food web from a macrophyte-dominated shallow lake, North China. Science of the Total Environment, 2020, 712, 136557.	3.9	34
45	Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling. Ecological Modelling, 2020, 416, 108881.	1.2	34
46	Nitrifying activity and ammonia-oxidizing microorganisms in a constructed wetland treating polluted surface water. Science of the Total Environment, 2018, 628-629, 310-318.	3.9	32
47	Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes. Environmental Pollution, 2020, 260, 114106.	3.7	32
48	Distribution of sediment ammonia-oxidizing microorganisms in plateau freshwater lakes. Applied Microbiology and Biotechnology, 2015, 99, 4435-4444.	1.7	31
49	Scientometric analysis of phosphorus research in eutrophic lakes. Scientometrics, 2015, 102, 1951-1964.	1.6	31
50	Six-decade temporal change and seasonal decomposition of climate variables in Lake Dianchi watershed (China): stable trend or abrupt shift?. Theoretical and Applied Climatology, 2015, 119, 181-191.	1.3	31
51	Trophodynamics of Organic Pollutants in Pelagic and Benthic Food Webs of Lake Dianchi: Importance of Ingested Sediment As Uptake Route. Environmental Science & Environmental Science & 2017, 51, 14135-14143.	4.6	31
52	Rising middle and rich classes drove China's carbon emissions. Resources, Conservation and Recycling, 2020, 159, 104839.	5.3	30
53	Ecological–economic modeling as a tool for watershed management: A case study of Lake Qionghai watershed, China. Limnologica, 2008, 38, 89-104.	0.7	29
54	Inexact Chance-Constrained Linear Programming Model for Optimal Water Pollution Management at the Watershed Scale. Journal of Water Resources Planning and Management - ASCE, 2008, 134, 347-356.	1.3	29

#	Article	IF	CITATIONS
55	Exploring Estuarine Nutrient Susceptibility. Environmental Science & Exploring Estuarine Nutrient Science & Exploring Estua	4.6	29
56	Distribution of bacterial communities across plateau freshwater lake and upslope soils. Journal of Environmental Sciences, 2016, 43, 61-69.	3.2	29
57	Spatio-temporal Variation of Sediment Methanotrophic Microorganisms in a Large Eutrophic Lake. Microbial Ecology, 2016, 71, 9-17.	1.4	29
58	Identify sectors' role on the embedded CO 2 transfer networks through China's regional trade. Ecological Indicators, 2017, 80, 114-123.	2.6	29
59	Denitrification and the controlling factors in Yunnan Plateau Lakes (China): Exploring the role of enhanced internal nitrogen cycling by algal blooms. Journal of Environmental Sciences, 2019, 76, 349-358.	3.2	29
60	Vertical profiles of sediment methanogenic potential and communities in two plateau freshwater lakes. Biogeosciences, 2017, 14, 341-351.	1.3	28
61	REILP Approach for Uncertainty-Based Decision Making in Civil Engineering. Journal of Computing in Civil Engineering, 2010, 24, 357-364.	2.5	27
62	Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields. Journal of Hydrology, 2017, 553, 262-275.	2.3	27
63	Cyanobacterial bloom induces structural and functional succession of microbial communities in eutrophic lake sediments. Environmental Pollution, 2021, 284, 117157.	3.7	27
64	Buffering effect of suspended particulate matter on phosphorus cycling during transport from rivers to lakes. Water Research, 2022, 216, 118350.	5.3	27
65	Analysis of the Chesapeake Bay Hypoxia Regime Shift: Insights from Two Simple Mechanistic Models. Estuaries and Coasts, 2010, 33, 629-639.	1.0	25
66	Modelling the Effect of Weather Conditions on Cyanobacterial Bloom Outbreaks in Lake Dianchi: a Rough Decision-Adjusted Logistic Regression Model. Environmental Modeling and Assessment, 2013, 18, 199-207.	1.2	25
67	Multi-agent hybrid particle swarm optimization (MAHPSO) for wastewater treatment network planning. Journal of Environmental Management, 2019, 234, 525-536.	3.8	25
68	Achieving carbon neutrality enables China to attain its industrial water-use target. One Earth, 2022, 5, 188-200.	3.6	25
69	Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils. Applied Microbiology and Biotechnology, 2014, 98, 10197-10209.	1.7	24
70	Identification and spatial patterns of coastal water pollution sources based on GIS and chemometric approach. Journal of Environmental Sciences, 2007, 19, 805-810.	3.2	23
71	Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status. Systematic and Applied Microbiology, 2018, 41, 650-657.	1.2	22
72	ICCLP: An Inexact Chance-Constrained Linear Programming Model for Land-Use Management of Lake Areas in Urban Fringes. Environmental Management, 2007, 40, 966-980.	1.2	21

#	Article	IF	CITATIONS
73	Evaluating anthropogenic N inputs to diverse lake basins: A case study of three Chinese lakes. Ambio, 2015, 44, 635-646.	2.8	21
74	Vertical profiles of water and sediment denitrifiers in two plateau freshwater lakes. Applied Microbiology and Biotechnology, 2017, 101, 3361-3370.	1.7	20
75	Decreased takeoff performance of aircraft due to climate change. Climatic Change, 2018, 151, 463-472.	1.7	19
76	Towards efficient Low Impact Development: A multi-scale simulation-optimization approach for nutrient removal at the urban watershed. Journal of Cleaner Production, 2020, 269, 122295.	4.6	19
77	A nonlinearity interval mapping scheme for efficient waste load allocation simulationâ€optimization analysis. Water Resources Research, 2010, 46, .	1.7	18
78	Ammonia-oxidizing archaea and bacteria in water columns and sediments of a highly eutrophic plateau freshwater lake. Environmental Science and Pollution Research, 2016, 23, 15358-15369.	2.7	18
79	A framework to develop joint nutrient criteria for lake eutrophication management in eutrophic lakes. Journal of Hydrology, 2021, 594, 125883.	2.3	18
80	Differences in phytoaccumulation of organic pollutants in freshwater submerged and emergent plants. Environmental Pollution, 2018, 241, 247-253.	3.7	17
81	Remediation of polluted river water by biological contact oxidation process using two types of carriers. International Journal of Environment and Pollution, 2009, 38, 223.	0.2	16
82	Risk Explicit Interval Linear Programming Model for Uncertainty-Based Nutrient-Reduction Optimization for the Lake Qionghai Watershed. Journal of Water Resources Planning and Management - ASCE, 2011, 137, 83-91.	1.3	16
83	Extraction of connected river networks from multi-temporal remote sensing imagery using a path tracking technique. Remote Sensing of Environment, 2020, 246, 111868.	4.6	16
84	Impacts of climate change mitigation on agriculture water use: A provincial analysis in China. Geography and Sustainability, 2020, 1, 189-199.	1.9	15
85	Optimal Land-Use Management for Surface Source Water Protection Under Uncertainty: A Case Study of Songhuaba Watershed (Southwestern China). Water Resources Management, 2009, 23, 2069-2083.	1.9	14
86	Uncertainty-Based Multi-Objective Decision Making with Hierarchical Reliability Analysis Under Water Resources and Environmental Constraints. Water Resources Management, 2016, 30, 805-822.	1.9	14
87	Structural decoupling the sectoral growth from complete energy consumption in China. Energy Strategy Reviews, 2021, 34, 100634.	3.3	14
88	A Generalized Interval Fuzzy Chance-Constrained Programming Method for Domestic Wastewater Management Under Uncertainty – A Case Study of Kunming, China. Water Resources Management, 2015, 29, 3015-3036.	1.9	13
89	Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction. Science of the Total Environment, 2015, 515-516, 39-48.	3.9	13
90	Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship. Ecological Modelling, 2019, 393, 120-126.	1.2	13

#	Article	IF	CITATIONS
91	Thermal mixing of Lake Erhai (Southwest China) induced by bottom heat transfer: Evidence based on observations and CE-QUAL-W2 model simulations. Journal of Hydrology, 2021, 603, 126973.	2.3	13
92	Spatiotemporal variation and hotspots of climate change in the Yangtze River Watershed during 1958–2017. Journal of Chinese Geography, 2022, 32, 141-155.	1.5	13
93	Predicting the Hypoxic-Volume in Chesapeake Bay with the Streeter-Phelps Model: A Bayesian Approach1. Journal of the American Water Resources Association, 2011, 47, 1348-1363.	1.0	12
94	Sustainability needs and practices assessment in the building industry of China. Energy Policy, 2013, 57, 212-220.	4.2	12
95	Enhanced nonlinearity interval mapping scheme for highâ€performance simulationâ€optimization of watershedâ€scale <scp>BMP</scp> placement. Water Resources Research, 2015, 51, 1831-1845.	1.7	12
96	Guided adaptive optimal decision making approach for uncertainty based watershed scale load reduction. Water Research, 2011, 45, 4885-4895.	5.3	11
97	Distribution of ammonia-oxidizing archaea and bacteria in plateau soils across different land use types. Applied Microbiology and Biotechnology, 2015, 99, 6899-6909.	1.7	11
98	Ammonium Impacts Methane Oxidation and Methanotrophic Community in Freshwater Sediment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 250.	2.0	11
99	Decline in nitrogen concentrations of eutrophic Lake Dianchi associated with policy interventions during 2002–2018. Environmental Pollution, 2021, 288, 117826.	3.7	11
100	Interactive decision procedure for watershed nutrient load reduction: An integrated chance-constrained programming model with risk–cost tradeoff. Environmental Modelling and Software, 2014, 61, 166-173.	1.9	10
101	Activity, abundance and structure of ammonia-oxidizing microorganisms in plateau soils. Research in Microbiology, 2015, 166, 655-663.	1.0	10
102	Application of an AQUATOX model for direct toxic effects and indirect ecological effects assessment of Polycyclic aromatic hydrocarbons (PAHs) in a plateau eutrophication lake, China. Ecological Modelling, 2018, 388, 31-44.	1.2	10
103	What maintains seasonal nitrogen limitation in hyper-eutrophic Lake Dianchi? Insights from stoichiometric three-dimensional numerical modeling. Aquatic Sciences, 2020, 82, 1.	0.6	10
104	Benthic-pelagic coupling in lake energetic food webs. Ecological Modelling, 2020, 417, 108928.	1.2	10
105	Microbial Biomass and Community Composition Involved in Cycling of Organic Phosphorus in Sediments of Lake Dianchi, Southwest China. Geomicrobiology Journal, 2017, 34, 249-260.	1.0	9
106	Methanotrophic community abundance and composition in plateau soils with different plant species and plantation ways. Applied Microbiology and Biotechnology, 2015, 99, 9237-9244.	1.7	8
107	A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton. Ecological Modelling, 2018, 368, 404-410.	1.2	8
108	A refined risk explicit interval linear programming approach for optimal watershed load reduction with objective-constraint uncertainty tradeoff analysis. Frontiers of Environmental Science and Engineering, 2016, 10, 129-140.	3.3	7

#	Article	IF	CITATIONS
109	Exploring Dynamics of the Chlorophyll a-Total Phosphorus Relationship at the Lake-Specific Scale: a Bayesian Hierarchical Model. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	7
110	Ecoregional or site-specific lake nutrient criteria? Evidence from ecological fallacy. Ecological Indicators, 2020, 111, 105989.	2.6	7
111	Bayesian change point quantile regression approach to enhance the understanding of shifting phytoplankton-dimethyl sulfide relationships in aquatic ecosystems. Water Research, 2021, 201, 117287.	5.3	7
112	Dynamic phosphorus budget for lake-watershed ecosystems. Journal of Environmental Sciences, 2006, 18, 596-603.	3.2	7
113	Impact of Calibration Objective on Hydrological Model Performance in Ungauged Watersheds. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	6
114	Cross-lake comparisons of physical and biological settling of phosphorus: A phosphorus budget model with Bayesian hierarchical approach. Ecological Modelling, 2016, 337, 231-240.	1.2	6
115	Parameter uncertainty-based pattern identification and optimization for robust decision making on watershed load reduction. Journal of Hydrology, 2017, 547, 708-717.	2.3	6
116	Contrasting patterns of macroinvertebrates inshore vs. offshore in a plateau eutrophic lake: Implications for lake management. Limnologica, 2018, 70, 10-19.	0.7	6
117	Disentangling effects of multiple stressors on matter flow in a lake food web. Ecology and Evolution, 2021, 11, 9652-9664.	0.8	6
118	Internal positive feedback promotes water quality improvement for a recovering hyper-eutrophic lake: A three-dimensional nutrient flux tracking model. Science of the Total Environment, 2021, 772, 145505.	3.9	6
119	Dynamics of bacterial communities in a river water treatment wetland. Annals of Microbiology, 2019, 69, 637-645.	1.1	4
120	Is ecoregional scale precise enough for lake nutrient criteria? Insights from a novel relationship-based clustering approach. Ecological Indicators, 2019, 97, 341-349.	2.6	4
121	Exploring the type and strength of nonlinearity in water quality responses to nutrient loading reduction in shallow eutrophic water bodies: Insights from a large number of numerical simulations. Journal of Environmental Management, 2022, 313, 115000.	3.8	4
122	Biotic condition assessment and the implication for lake fish conservation: a case study of Lake Qionghai, China. Water and Environment Journal, 2009, 23, 189-199.	1.0	3
123	A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China. Scientific World Journal, The, 2013, 2013, 1-14.	0.8	3
124	Exploring the Mechanism of Catastrophic Regime Shift in a Shallow Plateau Lake. Developments in Environmental Modelling, 2014, , 411-435.	0.3	2
125	Robustness-Optimality Tradeoff for Watershed Load Reduction Decision Making under Deep Uncertainty. Water Resources Management, 2017, 31, 3627-3640.	1.9	2
126	Quantifying the risk of irreversible degradation for ecosystems: A probabilistic method based on Bayesian inference. Ecological Indicators, 2019, 107, 105621.	2.6	2

Yong Liu

#	Article	IF	CITATION
127	Predicting hydrological alterations to quantitative and localized climate change in plateau regions: A case study of theÂLake Dianchi Basin,ÂChina. Stochastic Environmental Research and Risk Assessment, 2022, 36, 969-983.	1.9	2
128	Classification of estuaries in China based on eutrophication susceptibility to nutrient load. Science China Earth Sciences, 2015, 58, 949-961.	2.3	1
129	Fuzzy comprehensive evaluation model of ecological demonstration area. Chinese Geographical Science, 2005, 15, 303-308.	1.2	0
130	Land Use and Landscape Pattern Changes in Chongqing Liangjiang New District. Public Administration Research, 2012, 1 , .	0.1	0
131	A Multi-Objective Chance-Constrained Programming Approach for Uncertainty-Based Optimal Nutrients Load Reduction at the Watershed Scale. Water (Switzerland), 2017, 9, 322.	1.2	O