JiÅ**Ã**[™] ÄŒejka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523756/publications.pdf Version: 2024-02-01

		26567	37111
225	11,306	56	96
papers	citations	h-index	g-index
234	234	234	8818
all docs	docs citations	times ranked	citing authors

<u>ΙΙΔ΄™Ã-ÄŒΓΙΚΛ</u>

#	Article	IF	CITATIONS
1	Importance of the Static Infrastructure for Dissemination of Information within Intelligent Transportation Systems. Communications - Scientific Letters of the University of Zilina, 2022, 24, E63-E73.	0.3	6
2	MWW-type zeolite nanostructures for a one-pot three-component Prins–Friedel–Crafts reaction. Inorganic Chemistry Frontiers, 2022, 9, 1244-1257.	3.0	7
3	Sonogashira Synthesis of New Porous Aromatic Framework-Entrapped Palladium Nanoparticles as Heterogeneous Catalysts for Suzuki–Miyaura Cross-Coupling. ACS Applied Materials & Interfaces, 2022, 14, 10428-10437.	4.0	18
4	Adsorption and catalytic study of cyclopentyl methyl ether formation: structure-activity interplay in medium-pore zeolites. Applied Materials Today, 2022, 28, 101505.	2.3	1
5	Nanosponge hierarchical micro-mesoporous MFI zeolites as a high-performance catalyst for the hydroamination of methyl acrylate with aniline. Microporous and Mesoporous Materials, 2022, , 112087.	2.2	3
6	MWW and MFI Frameworks as Model Layered Zeolites: Structures, Transformations, Properties, and Activity. ACS Catalysis, 2021, 11, 2366-2396.	5.5	63
7	Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites. Chemistry of Materials, 2021, 33, 1228-1237.	3.2	11
8	Nanosponge TSâ€1: A Fully Crystalline Hierarchical Epoxidation Catalyst. Advanced Materials Interfaces, 2021, 8, 2001288.	1.9	9
9	The Role of Water Loading and Germanium Content in Germanosilicate Hydrolysis. Journal of Physical Chemistry C, 2021, 125, 23744-23757.	1.5	12
10	Guaiacol hydrodeoxygenation over Ni2P supported on 2D-zeolites. Catalysis Today, 2020, 345, 48-58.	2.2	41
11	Electronic/steric effects in hydrogenation of nitroarenes over the heterogeneous Pd@BEA and Pd@MWW catalysts. Catalysis Today, 2020, 345, 39-47.	2.2	11
12	Solvent-free ketalization of polyols over germanosilicate zeolites: the role of the nature and strength of acid sites. Catalysis Science and Technology, 2020, 10, 8254-8264.	2.1	17
13	Zeolite (In)Stability under Aqueous or Steaming Conditions. Advanced Materials, 2020, 32, e2003264.	11.1	75
14	Full crystal structure, hydrogen bonding and spectroscopic, mechanical and thermodynamic properties of mineral uranopilite. RSC Advances, 2020, 10, 31947-31960.	1.7	10
15	Synthesis and Post‧ynthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie, 2020, 132, 19548-19557.	1.6	4
16	Synthesis and Post‧ynthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie - International Edition, 2020, 59, 19380-19389.	7.2	48
17	Incorporation of Ti as a Pyramidal Framework Site in the Mono‣ayered MCMâ€56 Zeolite and its Oxidation Activity. ChemCatChem, 2019, 11, 520-527.	1.8	14
18	The crucial role of clay binders in the performance of ZSM-5 based materials for biomass catalytic pyrolysis. Catalysis Science and Technology, 2019, 9, 789-802.	2.1	35

#	Article	IF	CITATIONS
19	Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous and Mesoporous Materials, 2019, 279, 364-370.	2.2	31
20	Crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite. RSC Advances, 2019, 9, 15323-15334.	1.7	24
21	A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis. Journal of Materials Chemistry A, 2019, 7, 7701-7709.	5.2	41
22	The BrÃ,nsted acidity of three- and two-dimensional zeolites. Microporous and Mesoporous Materials, 2019, 282, 121-132.	2.2	21
23	Novel approach towards Al-rich AFI for catalytic application. Applied Catalysis A: General, 2019, 577, 62-68.	2.2	2
24	Structural, mechanical, spectroscopic and thermodynamic characterization of the copper-uranyl tetrahydroxide mineral vandenbrandeite. RSC Advances, 2019, 9, 40708-40726.	1.7	10
25	Needs and Gaps for Catalysis in Addressing Transitions in Chemistry and Energy from a Sustainability Perspective. ChemSusChem, 2019, 12, 621-632.	3.6	19
26	\hat{l}_{\pm} -Pinene oxide isomerization: role of zeolite structure and acidity in the selective synthesis of campholenic aldehyde. Catalysis Science and Technology, 2018, 8, 2488-2501.	2.1	22
27	Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Transactions, 2018, 47, 3084-3092.	1.6	14
28	New catalytic materials for energy and chemistry in transition. Chemical Society Reviews, 2018, 47, 8066-8071.	18.7	27
29	Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose. Green Chemistry, 2018, 20, 3499-3511.	4.6	101
30	Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science and Technology, 2018, 8, 4690-4701.	2.1	33
31	Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite. Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.	3.0	17
32	Surfactant-directed mesoporous zeolites with enhanced catalytic activity in tetrahydropyranylation of alcohols: Effect of framework type and morphology. Applied Catalysis A: General, 2017, 537, 24-32.	2.2	23
33	Microwave heating and the fast ADOR process for preparing zeolites. Journal of Materials Chemistry A, 2017, 5, 8037-8043.	5.2	8
34	Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15. Journal of Industrial and Engineering Chemistry, 2017, 53, 119-126.	2.9	17
35	Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conversion and Biorefinery, 2017, 7, 289-304.	2.9	67
36	Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on <i>cfi</i> -Type Layers. Chemistry of Materials, 2017, 29, 5605-5611.	3.2	60

#	Article	IF	CITATIONS
37	Zeolite supported palladium catalysts for hydroalkylation of phenolic model compounds. Microporous and Mesoporous Materials, 2017, 252, 116-124.	2.2	18
38	Baeyer–Villiger Oxidation of Cyclic Ketones by Using Tin–Silica Pillared Catalysts. ChemCatChem, 2017, 9, 3063-3072.	1.8	29
39	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie - International Edition, 2017, 56, 4324-4327.	7.2	70
40	Catalytic cracking of vacuum gasoil over -SVR, ITH, and MFI zeolites as FCC catalyst additives. Fuel Processing Technology, 2017, 161, 23-32.	3.7	31
41	Twinned Growth of Metalâ€Free, Triazineâ€Based Photocatalyst Films as Mixedâ€Dimensional (2D/3D) van der Waals Heterostructures. Advanced Materials, 2017, 29, 1703399.	11.1	59
42	Tailored Band Gaps in Sulfur―and Nitrogenâ€Containing Porous Donor–Acceptor Polymers. Chemistry - A European Journal, 2017, 23, 13023-13027.	1.7	35
43	Superior Activity of Isomorphously Substituted MOFs with MILâ€100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. ChemPlusChem, 2017, 82, 152-159.	1.3	26
44	Manipulation with Zeolitic Layers Toward New Porous Materials. Advanced Science Letters, 2017, 23, 5955-5957.	0.2	0
45	Metal–Organic Frameworks Mâ€MOFâ€74 and Mâ€MILâ€100: Comparison of Textural, Acidic, and Catalytic Properties. ChemPlusChem, 2016, 81, 828-835.	1.3	28
46	Catalysis on Zeolites – Catalysis Science & Technology. Catalysis Science and Technology, 2016, 6, 2465-2466.	2.1	24
47	Tuning of textural properties of germanosilicate zeolites ITH and IWW by acidic leaching. Journal of Energy Chemistry, 2016, 25, 318-326.	7.1	16
48	Accessibility enhancement of TS-1-based catalysts for improving the epoxidation of plant oil-derived substrates. Catalysis Science and Technology, 2016, 6, 7280-7288.	2.1	39
49	The effect of alkylation route on ethyltoluene production over different structural types of zeolites. Chemical Engineering Journal, 2016, 306, 1071-1080.	6.6	13
50	Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P. Dalton Transactions, 2016, 45, 14124-14130.	1.6	9
51	Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route. Journal of Visualized Experiments, 2016, , e53463.	0.2	3
52	The effect of the zeolite pore size on the Lewis acid strength of extra-framework cations. Physical Chemistry Chemical Physics, 2016, 18, 18063-18073.	1.3	9
53	Interconversion of the CDO Layered Precursor ZSM-55 between FER and CDO Frameworks by Controlled Deswelling and Reassembly. Chemistry of Materials, 2016, 28, 3616-3619.	3.2	16
54	A novel zinc(<scp>ii</scp>) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties. Dalton Transactions, 2016, 45, 1233-1242.	1.6	26

#	Article	IF	CITATIONS
55	Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catalysis Today, 2016, 277, 171-181.	2.2	116
56	Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts. Catalysis Science and Technology, 2016, 6, 2775-2786.	2.1	40
57	Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 2016, 7, 3589-3601.	3.7	26
58	Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science and Technology, 2016, 6, 2467-2484.	2.1	161
59	The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.	2.2	16
60	Synthesis of â€~unfeasible' zeolites. Nature Chemistry, 2016, 8, 58-62.	6.6	186
61	Three-dimensional 10-ring zeolites: The activities in toluene alkylation and disproportionation. Catalysis Today, 2016, 259, 97-106.	2.2	16
62	Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials, 2015, 202, 297-302.	2.2	13
63	Remarkable catalytic properties of hierarchical zeolite-Beta in epoxide rearrangement reactions. Catalysis Today, 2015, 243, 141-152.	2.2	27
64	Selective production of xylenes from alkyl-aromatics and heavy reformates over dual-zeolite catalyst. Catalysis Today, 2015, 243, 118-127.	2.2	13
65	Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chemistry of Materials, 2015, 27, 4620-4629.	3.2	64
66	Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 2015, 7, 381-388.	6.6	153
67	Post-synthesis incorporation of Al into germanosilicate ITH zeolites: the influence of treatment conditions on the acidic properties and catalytic behavior in tetrahydropyranylation. Catalysis Science and Technology, 2015, 5, 2973-2984.	2.1	29
68	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	18.7	275
69	Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction. ACS Catalysis, 2015, 5, 2596-2604.	5.5	74
70	Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catalysis Today, 2015, 243, 158-162.	2.2	93
71	The Assemblyâ€Disassemblyâ€Organizationâ€Reassembly Mechanism for 3Dâ€2Dâ€3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie - International Edition, 2014, 53, 7048-7052. 	7.2	62
72	From Doubleâ€Fourâ€Ring Germanosilicates to New Zeolites: In Silico Investigation. ChemPhysChem, 2014, 15, 2972-2976.	1.0	31

#	Article	IF	CITATIONS
73	Atomic Force Microscopy of Novel Zeolitic Materials Prepared by Topâ€Down Synthesis and ADOR Mechanism. Chemistry - A European Journal, 2014, 20, 10446-10450.	1.7	9
74	Intercalation chemistry of layered zeolite precursor IPC-1P. Catalysis Today, 2014, 227, 37-44.	2.2	29
75	A novel nickel metal–organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation. Dalton Transactions, 2014, 43, 3730.	1.6	83
76	Synthesis and catalytic evaluation in the Heck reaction of deposited palladium catalysts immobilized via amide linkers and their molecular analogues. Catalysis Today, 2014, 227, 207-214.	2.2	13
77	Synthesis and catalytic properties of titanium containing extra-large pore zeolite CIT-5. Catalysis Today, 2014, 227, 80-86.	2.2	24
78	Selective synthesis of linear alkylbenzene by alkylation of benzene with 1-dodecene over desilicated zeolites. Catalysis Today, 2014, 227, 187-197.	2.2	36
79	Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 2014, 114, 4807-4837.	23.0	625
80	Annulation of Phenols: Catalytic Behavior of Conventional and 2 D Zeolites. ChemCatChem, 2014, 6, 1919-1927.	1.8	21
81	Heterogeneous Pd catalysts supported on silica matrices. RSC Advances, 2014, 4, 65137-65162.	1.7	137
82	Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything. Dalton Transactions, 2014, 43, 10548.	1.6	23
83	The aqueous colloidal suspension of ultrathin 2D MCM-22P crystallites. Chemical Communications, 2014, 50, 7378.	2.2	16
84	Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chemistry of Materials, 2014, 26, 5789-5798.	3.2	60
85	Ru-Based Complexes with Quaternary Ammonium Tags Immobilized on Mesoporous Silica as Olefin Metathesis Catalysts. ACS Catalysis, 2014, 4, 3227-3236.	5.5	52
86	Catalysis by Dynamically Formed Defects in a Metal–Organic Framework Structure: Knoevenagel Reaction Catalyzed by Copper Benzeneâ€1,3,5â€tricarboxylate. ChemCatChem, 2014, 6, 2821-2824.	1.8	54
87	High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives. Dalton Transactions, 2014, 43, 10501.	1.6	44
88	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	7.2	104
89	Recent Advances in Reactions of Alkylbenzenes Over Novel Zeolites: The Effects of Zeolite Structure and Morphology. Catalysis Reviews - Science and Engineering, 2014, 56, 333-402.	5.7	148

90 Layered inorganic solids. Dalton Transactions, 2014, 43, 10274.

1.6 11

#	Article	IF	CITATIONS
91	Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. Journal of the American Chemical Society, 2014, 136, 2511-2519.	6.6	74
92	Preparation and Catalytic Evaluation of a Palladium Catalyst Deposited over Twoâ€Dimensional Zeolite ITQâ€2 Modified with Nâ€Donor Groups. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 571-576.	0.6	0
93	CO2 Adsorption in Porous Materials. , 2013, , 535-558.		1
94	Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology, 2013, 3, 2509.	2.1	270
95	Synthesis, characterization and sorption properties of zinc(II) metal–organic framework containing methanetetrabenzoate ligand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 101-107.	2.3	21
96	Reinvestigation of the crystal structure of kasolite, Pb[(UO2)(SiO4)](H2O), an important alteration product of uraninite, UO2+x. Journal of Nuclear Materials, 2013, 434, 461-467.	1.3	12
97	Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem, 2013, 5, 1024-1031.	1.8	82
98	Application of Molecular Sieves in Transformations of Biomass and Biomass-Derived Feedstocks. Catalysis Reviews - Science and Engineering, 2013, 55, 1-78.	5.7	142
99	The importance of channel intersections in the catalytic performance of high silica stilbite. Journal of Catalysis, 2013, 298, 84-93.	3.1	24
100	Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology, 2013, 3, 500-507.	2.1	179
101	Transformation of aromatic hydrocarbons over isomorphously substituted UTL: Comparison with large and medium pore zeolites. Catalysis Today, 2013, 204, 22-29.	2.2	18
102	3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials. Chemistry of Materials, 2013, 25, 542-547.	3.2	76
103	The effect of substrate size in the Beckmann rearrangement: MOFs vs. zeolites. Catalysis Today, 2013, 204, 94-100.	2.2	29
104	Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups. Advanced Synthesis and Catalysis, 2013, 355, 247-268.	2.1	97
105	UTL zeolite and the way beyond. Microporous and Mesoporous Materials, 2013, 182, 229-238.	2.2	18
106	Theoretical investigation of the FriedlÃ ¤ der reaction catalysed by CuBTC: Concerted effect of the adjacent Cu2+ sites. Catalysis Today, 2013, 204, 101-107.	2.2	33
107	Deactivation Pathways of the Catalytic Activity of Metal–Organic Frameworks in Condensation Reactions. ChemCatChem, 2013, 5, 1553-1561.	1.8	52
108	The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catalysis Science and Technology, 2013, 3, 2119.	2.1	74

#	Article	IF	CITATIONS
109	Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 2013, 6, 865-871.	3.6	63
110	A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 2013, 5, 628-633.	6.6	355
111	Extra‣argeâ€Pore Zeolites with UTL Topology: Control of the Catalytic Activity by Variation in the Nature of the Active Sites. ChemCatChem, 2013, 5, 1891-1898.	1.8	24
112	A study into Stille crossâ€coupling reaction mediated by palladium catalysts deposited over siliceous supports bearing Nâ€donor groups at the surface. Applied Organometallic Chemistry, 2013, 27, 353-360.	1.7	4
113	Hoveyda–Grubbs first generation type catalyst immobilized on mesoporous molecular sieves. Journal of Molecular Catalysis A, 2013, 378, 184-192.	4.8	13
114	MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous and Mesoporous Materials, 2013, 167, 44-50.	2.2	57
115	Coordination of extraframework Li+ cation in the MCM-22 and MCM-36 zeolite: FTIR study of CO adsorbed. Adsorption, 2013, 19, 455-463.	1.4	9
116	Intramolecular Hydroalkoxylation of Nonâ€Activated CC Bonds Catalysed by Zeolites: An Experimental and Theoretical Study. ChemSusChem, 2013, 6, 1021-1030.	3.6	10
117	A New Family of Twoâ€Dimensional Zeolites Prepared from the Intermediate Layered Precursor IPCâ€3P Obtained during the Synthesis of TUN Zeolite. Chemistry - A European Journal, 2013, 19, 13937-13945.	1.7	21
118	Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions. Frontiers in Chemistry, 2013, 1, 11.	1.8	10
119	Synthesis of quinolines via Friedläder reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 2012, 41, 4036.	1.6	118
120	Control of CO2adsorption heats by the Al distribution in FER zeolites. Physical Chemistry Chemical Physics, 2012, 14, 1117-1120.	1.3	28
121	Controlling the Adsorption Enthalpy of CO ₂ in Zeolites by Framework Topology and Composition. ChemSusChem, 2012, 5, 2011-2022.	3.6	93
122	Synthesis of isomorphously substituted extra-large pore UTL zeolites. Journal of Materials Chemistry, 2012, 22, 15793.	6.7	66
123	Adsorption of Carbon Dioxide on Sodium and Potassium Forms of STlâ€Zeolite. ChemPlusChem, 2012, 77, 675-681.	1.3	12
124	Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite. Catalysis Today, 2012, 179, 61-72.	2.2	26
125	High activity of iron containing metal–organic-framework in acylation of p-xylene with benzoyl chloride. Catalysis Today, 2012, 179, 85-90	2.2	47
126	Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 2012, 179, 2-15.	2.2	274

#	Article	IF	CITATIONS
127	New inorganic–organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis. Catalysis Today, 2012, 187, 97-103.	2.2	26
128	On the location of iron and aluminium atoms in thermally activated AlMCM-58 and FeMCM-58 zeolites. Microporous and Mesoporous Materials, 2012, 151, 339-345.	2.2	4
129	Mutable Lewis and BrÃ,nsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine- ¹⁵ N. Langmuir, 2011, 27, 12115-12123.	1.6	50
130	Grubbs Catalysts Immobilized on Mesoporous Molecular Sieves via Phosphine and Pyridine Linkers. ACS Catalysis, 2011, 1, 709-718.	5.5	51
131	Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 2011, 133, 6130-6133.	6.6	208
132	Post-synthesis modification of TUN zeolite: Textural, acidic and catalytic properties. Catalysis Today, 2011, 168, 63-70.	2.2	17
133	Reductive dehalogenation of aryl halides over palladium catalysts deposited on SBA-15 type molecular sieve modified with amine donor groups. Journal of Molecular Catalysis A, 2011, 341, 97-102.	4.8	12
134	Transalkylation of ethyl benzene with triethylbenzene over ZSM-5 zeolite catalyst. Chemical Engineering Journal, 2010, 163, 98-107.	6.6	8
135	Post-Synthesis Modification of SSZ-35 Zeolite to Enhance the Selectivity in p-Xylene Alkylation with Isopropyl Alcohol. Topics in Catalysis, 2010, 53, 273-282.	1.3	38
136	Recent Advances in Catalysis Over Mesoporous Molecular Sieves. Topics in Catalysis, 2010, 53, 141-153.	1.3	237
137	TUN, IMF and -SVR Zeolites; Synthesis, Properties and Acidity. Topics in Catalysis, 2010, 53, 1330-1339.	1.3	18
138	Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages. Topics in Catalysis, 2010, 53, 1457-1469.	1.3	37
139	Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. Journal of Catalysis, 2010, 276, 327-334.	3.1	137
140	Selective Monoacylation of Ferrocene with Bulky Acylating Agents over Mesoporous Sieve AlKITâ€5. Chemistry - A European Journal, 2010, 16, 7773-7780.	1.7	12
141	Zeolites Efficiently Promote the Cyclization of Nonactivated Unsaturated Alcohols. Chemistry - A European Journal, 2010, 16, 12079-12082.	1.7	15
142	Acidity of MCM-58 and MCM-68 zeolites in comparison with some other 12-ring zeolites. Microporous and Mesoporous Materials, 2010, 129, 256-266.	2.2	38
143	Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction. Journal of Molecular Catalysis A, 2010, 329, 13-20.	4.8	29
144	Transalkylation of toluene with trimethylbenzenes over large-pore zeolites. Applied Catalysis A: General, 2010, 377, 99-106.	2.2	42

#	Article	IF	CITATIONS
145	Experimental and theoretical study of pyrazole N-alkylation catalyzed by basic modified molecular sieves. Chemical Engineering Journal, 2010, 161, 377-383.	6.6	15
146	Mesoporous Molecular Sieves as Advanced Supports for Olefin Metathesis Catalysts. Macromolecular Symposia, 2010, 293, 43-47.	0.4	16
147	Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption. Physical Chemistry Chemical Physics, 2010, 12, 5240.	1.3	35
148	Experimental and theoretical determination of adsorption heats of CO2 over alkali metal exchanged ferrierites with different Si/Al ratio. Physical Chemistry Chemical Physics, 2010, 12, 6413.	1.3	86
149	The role of the extra-framework cations in the adsorption of CO2 on faujasite Y. Physical Chemistry Chemical Physics, 2010, 12, 13534.	1.3	117
150	The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite. Journal of Catalysis, 2009, 266, 79-91.	3.1	96
151	Palladium Catalysts Supported on Mesoporous Molecular Sieves Bearing Nitrogen Donor Groups: Preparation and Use in Heck and Suzuki CC Bondâ€Forming Reactions. ChemSusChem, 2009, 2, 442-451.	3.6	40
152	Acylation Reactions over Zeolites and Mesoporous Catalysts. ChemSusChem, 2009, 2, 486-499.	3.6	128
153	Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations. Adsorption, 2009, 15, 264-270.	1.4	51
154	The Effect of Zeolite Structure on the Activity and Selectivity in p-Xylene Alkylation with Isopropyl Alcohol. Catalysis Letters, 2009, 131, 393-400.	1.4	10
155	Green Synthesis of Acetals/Ketals: Efficient Solvent-Free Process for the Carbonyl/Hydroxyl Group Protection Catalyzed by SBA-15 Materials. Topics in Catalysis, 2009, 52, 148-152.	1.3	24
156	Preparation of heterogeneous catalysts supported on mesoporous molecular sieves modified with various N-groups and their use in the Heck reaction. Journal of Molecular Catalysis A, 2009, 302, 28-35.	4.8	34
157	Functionalization of Delaminated Zeolite ITQ-6 for the Adsorption of Carbon Dioxide. Langmuir, 2009, 25, 10314-10321.	1.6	134
158	Adsorption of CO ₂ on Sodium-Exchanged Ferrierites: The Bridged CO ₂ Complexes Formed between Two Extraframework Cations. Journal of Physical Chemistry C, 2009, 113, 2928-2935.	1.5	75
159	Catalysis by Mesoporous Molecular Sieves. , 2009, , 669-692.		4
160	Polymerization of aliphatic alkynes with heterogeneous Mo catalysts supported on mesoporous molecular sieves. Journal of Polymer Science Part A, 2008, 46, 2593-2599.	2.5	16
161	The Role of Crystallization Parameters for the Synthesis of Germanosilicate with UTL Topology. Chemistry - A European Journal, 2008, 14, 10134-10140.	1.7	37
162	The use of palladium nanoparticles supported with MCM-41 and basic (Al)MCM-41 mesoporous sieves in microwave-assisted Heck reaction. Catalysis Today, 2008, 132, 63-67.	2.2	29

#	Article	IF	CITATIONS
163	Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas. Catalysis Reviews - Science and Engineering, 2008, 50, 222-286.	5.7	231
164	Acidic Properties of SSZ-33 and SSZ-35 Novel Zeolites:  a Complex Infrared and MAS NMR Study. Journal of Physical Chemistry C, 2008, 112, 2997-3007.	1.5	120
165	Ferrierite and MCM-22 for the CO2 adsorption. Studies in Surface Science and Catalysis, 2008, , 603-606.	1.5	8
166	New Templating Route for Synthesis of Mesoporous Alumina. Collection of Czechoslovak Chemical Communications, 2008, 73, 1125-1131.	1.0	2
167	Heterogeneous catalysts containing basic and palladium centres for Heck reaction. Studies in Surface Science and Catalysis, 2008, , 1283-1286.	1.5	0
168	27Al and 29Si MAS-NMR study of the MCM-22 zeolite modified by steam and alkaline treatments. Studies in Surface Science and Catalysis, 2008, 174, 937-940.	1.5	5
169	Exploring the catalytic activity of regular and ultralarge-pore Nb,Sn-SBA-15 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2007, 170, 1432-1437.	1.5	1
170	Micro/Mesoporous Composites. Studies in Surface Science and Catalysis, 2007, 168, 301-VI.	1.5	22
171	Synthesis and characterization of SBA-15 type mesoporous silicate containing niobium and tin. Studies in Surface Science and Catalysis, 2007, , 95-99.	1.5	1
172	Preface to the 3rd Edition. Studies in Surface Science and Catalysis, 2007, 168, vii-viii.	1.5	8
173	Comparison of oxidation properties of Nb and Sn in mesoporous molecular sieves. Applied Catalysis A: General, 2007, 321, 40-48.	2.2	27
174	Re(VII) oxide on mesoporous alumina of different types—Activity in the metathesis of olefins and their oxygen-containing derivatives. Applied Catalysis A: General, 2007, 320, 56-63.	2.2	28
175	Highly selective synthesis of acetylferrocene by acylation of ferrocene over zeolites. Applied Catalysis A: General, 2007, 327, 255-260.	2.2	24
176	Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts. Applied Catalysis A: General, 2007, 332, 56-64.	2.2	83
177	Synthesis of highly ordered MCM-41 silica with spherical particles. Microporous and Mesoporous Materials, 2007, 104, 52-58.	2.2	45
178	Grafting of palladium nanoparticles onto mesoporous molecular sieve MCM-41: Heterogeneous catalysts for the formation of an N-substituted pyrrol. Journal of Molecular Catalysis A, 2007, 263, 259-265.	4.8	21
179	The use of palladium nanoparticles supported on MCM-41 mesoporous molecular sieves in Heck reaction: A comparison of basic and neutral supports. Journal of Molecular Catalysis A, 2007, 274, 127-132.	4.8	37
180	The Effect of Type of Acid Sites in Molecular Sieves on Activity and Selectivity in Acylation Reactions. Collection of Czechoslovak Chemical Communications, 2007, 72, 728-746.	1.0	17

#	Article	IF	CITATIONS
181	Synthesis and adsorption investigations of zeolites MCM-22 andÂMCM-49 modified by alkali metal cations. Adsorption, 2007, 13, 257-265.	1.4	50
182	Preparation of MCM-41 silica using the cationic surfactant blend. Adsorption, 2007, 13, 247-256.	1.4	10
183	Synthesis of Pyridines Over Zeolites in Gas Phase. Collection of Czechoslovak Chemical Communications, 2007, 72, 618-628.	1.0	2
184	Formation of Mesopores in ZSM-5 by Carbon Templating. Studies in Surface Science and Catalysis, 2006, , 905-912.	1.5	39
185	Rhenium oxide supported on organized mesoporous alumina — A highly active and versatile catalyst for alkene, diene, and cycloalkene metathesis. Applied Catalysis A: General, 2006, 302, 193-200.	2.2	48
186	Porosity of micro/mesoporous composites. Microporous and Mesoporous Materials, 2006, 92, 154-160.	2.2	49
187	Synthesis of organized mesoporous alumina templated with ionic liquids. Microporous and Mesoporous Materials, 2006, 95, 176-179.	2.2	62
188	Metathesis of 1-octene over MoO3 supported on mesoporous molecular sieves: The influence of the support architecture. Microporous and Mesoporous Materials, 2006, 96, 44-54.	2.2	77
189	One-pot synthesis of isobutyl toluene via combined acylation and hydrogenation over Pd–Beta zeolite. Microporous and Mesoporous Materials, 2006, 90, 384-389.	2.2	2
190	Molecular structure of the uranyl silicates—a Raman spectroscopic study. Journal of Raman Spectroscopy, 2006, 37, 538-551.	1.2	97
191	Comparison of microwave and hydrothermal approaches to the synthesis of tin-containing mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2006, , 55-62.	1.5	Ο
192	Preparation and Crystal Structure of Bis(tert-butyltetramethylcyclopentadienyl)dichlorotitanium. Collection of Czechoslovak Chemical Communications, 2005, 70, 1589-1603.	1.0	11
193	Incorporation of Aluminium and Iron into the Zeolite MCM-58. European Journal of Inorganic Chemistry, 2005, 2005, 1154-1161.	1.0	10
194	Non-degenerate 1,2-silyl shift in silyl substituted alkyltrimethylcyclopentadienes. Journal of Organometallic Chemistry, 2005, 690, 731-741.	0.8	4
195	Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Applied Catalysis A: General, 2005, 281, 85-91.	2.2	68
196	Hydrodeoxygenation of benzophenone on Pd catalysts. Applied Catalysis A: General, 2005, 296, 169-175.	2.2	64
197	Solvent-Induced Textural Changes of As-Synthesized Mesoporous Alumina, As Reported by Spin Probe Electron Spin Resonance Spectroscopy. Langmuir, 2005, 21, 2591-2597.	1.6	7
198	Micro/Mesoporous Composites Based on Colloidal Zeolite Grown in Mesoporous Matrix. Collection of Czechoslovak Chemical Communications, 2005, 70, 1829-1847.	1.0	7

ЈіÅ™Ã-ÄŒејка

#	Article	IF	CITATIONS
199	Rhenium Oxide Supported on Mesoporous Organised Alumina as a Catalyst for Metathesis of 1-Alkenes. Catalysis Letters, 2004, 97, 25-29.	1.4	46
200	Preparation and catalytic application of MCM-41 modified with a ferrocene carboxyphosphine and a ruthenium complex. Journal of Molecular Catalysis A, 2004, 224, 161-169.	4.8	30
201	Disproportionation of trimethyl benzenes over large pore zeolites: catalytic and adsorption study. Applied Catalysis A: General, 2004, 277, 191-199.	2.2	45
202	Structural Characterization of Micellar Aggregates in Sodium Dodecyl Sulfate/Aluminum Nitrate/Urea/Water System in the Synthesis of Mesoporous Alumina. Journal of Physical Chemistry B, 2004, 108, 7735-7743.	1.2	16
203	High-Resolution Adsorption of Nitrogen on Mesoporous Alumina. Langmuir, 2004, 20, 7532-7539.	1.6	32
204	Pyrrole as a Probe Molecule for Characterization of Basic Sites in ZSM-5:Â A Combined FTIR Spectroscopy and Computational Study. Journal of Physical Chemistry B, 2004, 108, 16012-16022.	1.2	32
205	Organized mesoporous alumina: synthesis, structure and potential in catalysis. Applied Catalysis A: General, 2003, 254, 327-338.	2.2	339
206	Hydrogenation and Hydrogenolysis of Acetophenone. Collection of Czechoslovak Chemical Communications, 2003, 68, 1969-1984.	1.0	22
207	(Al)MCM-41 Molecular Sieves. Aluminium Distribution, Uniformity and Structure of Inner Surface. Collection of Czechoslovak Chemical Communications, 2003, 68, 1998-2018.	1.0	5
208	Incorporation of Aluminum and Iron Into the ZSM-12 Zeolite: Synthesis and Characterization of Acid Sites. Collection of Czechoslovak Chemical Communications, 2002, 67, 1760-1778.	1.0	19
209	ACID-CATALYZED SYNTHESIS OF MONO- AND DIALKYL BENZENES OVER ZEOLITES: ACTIVE SITES, ZEOLITE TOPOLOGY, AND REACTION MECHANISMS. Catalysis Reviews - Science and Engineering, 2002, 44, 375-421.	5.7	354
210	High-temperature transformations of organised mesoporous alumina. Physical Chemistry Chemical Physics, 2002, 4, 4823-4829.	1.3	55
211	The Influence of pH on the Structure of Templated Mesoporous Silicas Prepared from Sodium Metasilicate. Collection of Czechoslovak Chemical Communications, 2001, 66, 555-566.	1.0	12
212	Nitrogen adsorption study of organised mesoporous alumina. Physical Chemistry Chemical Physics, 2001, 3, 5076-5081.	1.3	76
213	Uniformity and Ordering of Inner Walls of (Al)MCM-41. Collection of Czechoslovak Chemical Communications, 2001, 66, 567-574.	1.0	5
214	Permethyltitanocene-bis(trimethylsilyl) acetylene, an efficient catalyst for the head-to-tail dimerization of 1-alkynes. Journal of Organometallic Chemistry, 1996, 509, 235-240.	0.8	32
215	The Effect of Acidity of Al and Fe Silicates with MFI Structure on Benzene and Toluene Alkylation with Isopropyl Alcohol. Collection of Czechoslovak Chemical Communications, 1996, 61, 1115-1130.	1.0	3
216	Gas Chromatographic and Mass Spectrometric Characterization of Pyrolysis Products of Fossil Organic Matter from Localities of the Czech Republic. Collection of Czechoslovak Chemical Communications, 1996, 61, 1158-1166.	1.0	3

ЈіÅ™Ã-ÄŒејка

1.2

2

#	Article	IF	CITATIONS
217	Transition State and Diffusion Controlled Shape Selectivity in the Formation and Reaction of Xylenes. Studies in Surface Science and Catalysis, 1994, 83, 287-294.	1.5	15
218	Deactivation and Coking of Hzsm5 Catalysts During Alkylation Reactions. Studies in Surface Science and Catalysis, 1994, 88, 241-248.	1.5	10
219	Factors controlling iso-/n- andpara-selectivity in the alkylation of toluene with isopropanol on molecular sieves. Applied Catalysis A: General, 1994, 108, 187-204.	2.2	52
220	Titanium-catalyzed cycloaddition reactions of phenyl(trimethylsilyl)acetylene to conjugated dienes and 1,3,5-cycloheptatriene. 1-Phenyl-2-(trimethylsilyl)-cyclohexa-1,4-dienes and their aromatization. Journal of Organometallic Chemistry, 1992, 436, 143-153.	0.8	28
221	A comparison of the ethylation of ethylbenzene and toluene on acid, cationic and silylated ZSM-5 zeolites. Catalysis Letters, 1992, 16, 421-429.	1.4	44
222	Surface reactivity of ZSM-5 zeolites in interaction with ketones at ambient temperature (a FT-i.r.) Tj ETQq0 0 0 rg	BT/Qverlo	ock 10 Tf 50
223	Conversion of Acetone over Modified Y Zeolites, SAPO-5 and AlPO4-5. Zeitschrift Fur Physikalische Chemie, 1990, 168, 231-242.	1.4	7

Thermal and infrared spectrum analyses of curite. Thermochimica Acta, 1985, 93, 637-640.

To the infrared spectroscopy of natural uranyl phosphates. Physics and Chemistry of Minerals, 1984, 0.3 38