List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stopped-Flow Techniques in Ziegler Catalysis. Macromolecular Rapid Communications, 2001, 22, 1-24.	3.9	91
2	Stereospecific Nature of Active Sites on TiCl4/MgCl2 Ziegler–Natta Catalyst in the Presence of an Internal Electron Donor. Macromolecular Chemistry and Physics, 2003, 204, 395-402.	2.2	91
3	Variation in the Isospecific Active Sites of Internal Donor-Free MgCl2-Supported Ziegler Catalysts: Effect of External Electron Donors. Macromolecular Rapid Communications, 2001, 22, 326-328.	3.9	62
4	Specific Roles of Al-Alkyl Cocatalyst in the Origin of Isospecificity of Active Sites on Donor-Free TiCl4/MgCl2 Ziegler-Natta Catalyst. Macromolecular Chemistry and Physics, 2002, 203, 2412-2421.	2.2	62
5	Correlation of oxidation states of surface chromium species with ethylene polymerization activity for Phillips CrOx/SiO2 catalysts modified by Al-alkyl cocatalyst. Journal of Molecular Catalysis A, 2005, 238, 142-150.	4.8	50
6	Precise arguments on the distribution of stereospecific active sites on MgCl2-supported ziegler-natta catalysts. Macromolecular Symposia, 2004, 213, 7-18.	0.7	43
7	Effects of Electron Donors on Active Sites Distribution of MgCl2-Supported Ziegler-Natta Catalysts Investigated by Multiple Active Sites Model. Macromolecular Chemistry and Physics, 2005, 206, 961-966.	2.2	39
8	A Novel SiO ₂ ‣upported Cr–V Bimetallic Catalyst Making Polyethylene and Ethylene/1â€Hexene Copolymers with Bimodal Molecular Weight Distribution. Macromolecular Chemistry and Physics, 2014, 215, 1753-1766.	2.2	35
9	Ethylene and 1-hexene copolymerization with CO-prereduced phillips CrOx/SiO2 catalyst in the presence of Al-alkyl cocatalyst. Journal of Polymer Science Part A, 2005, 43, 4632-4641.	2.3	33
10	Homogeneously Dispersed Poly(propylene)/SiO2 Nanocomposites with Unprecedented Transparency. Macromolecular Rapid Communications, 2006, 27, 910-913.	3.9	33
11	Kinetic evaluation of various isospecific active sites on MgCl2-supported Ziegler catalysts. Macromolecular Symposia, 2003, 193, 71-80.	0.7	29
12	A Triphenylsiloxy Complex of Chromium(II) as a Switchable Catalyst for Ethylene Polymerization and Nonselective Oligomerization. Organometallics, 2011, 30, 2144-2148.	2.3	29
13	Active Site Transformation During the Induction Period of Ethylene Polymerization over the Phillips CrO _{<i>x</i>/i>} /SiO ₂ Catalyst. ChemCatChem, 2012, 4, 872-881.	3.7	29
14	CFD prediction of scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed reactor and preliminary exploration of its application for non-pelletizing polyethylene process. Powder Technology, 2015, 278, 94-110.	4.2	29
15	Dependence of tacticity distribution in thermal oxidative degradation of polypropylene. Polymer Bulletin, 2005, 54, 311-319.	3.3	26
16	Novel SiO ₂ ‧upported Chromium Oxide(Cr)/Vanadium Oxide(V) Bimetallic Catalysts for Production of Bimodal Polyethylene. Macromolecular Reaction Engineering, 2015, 9, 462-472.	1.5	26
17	Surface physico-chemical state of CO-prereduced Phillips CrOx/SiO2 catalyst and unique polymerization behavior in the presence of Al-alkyl cocatalyst. Macromolecular Symposia, 2004, 213, 37-46.	0.7	25
18	Effects of Branch Content and Branch Length on Polyethylene Crystallization: Molecular Dynamics Simulation. Macromolecular Theory and Simulations, 2016, 25, 303-311.	1.4	25

#	Article	IF	CITATIONS
19	Novel SiO ₂ â€Supported Silylâ€Chromate(Cr)/Imidoâ€Vanadium(V) Bimetallic Catalysts Producing Polyethylene and Ethylene/1â€Hexene Copolymers with Bimodal Molecularâ€Weight Distribution. Macromolecular Chemistry and Physics, 2014, 215, 1434-1445.	2.2	24
20	Estimation of Apparent Kinetic Constants of Individual Site Types for the Polymerization of Ethylene and αâ€olefins with Ziegler–Natta Catalysts. Macromolecular Reaction Engineering, 2016, 10, 551-566.	1.5	24
21	Analysis of Ethylene/1-Olefin Copolymers Made with Ziegler-Natta Catalysts by Deconvolution of Molecular Weight and Average Short Chain Branching Distributions. Macromolecular Reaction Engineering, 2016, 10, 206-214.	1.5	22
22	Effects of Hydrogen for Different Stereospecific Active Sites on Ultra Low TiCl3 Loading Supported Catalyst. Macromolecular Reaction Engineering, 2007, 1, 160-164.	1.5	21
23	Copolymerization of ethylene and cyclopentene with the Phillips CrO _{<i>x</i>} /SiO ₂ catalyst in the presence of an aluminum alkyl cocatalyst. Journal of Applied Polymer Science, 2009, 111, 1869-1877.	2.6	21
24	Cationic Pyridylamido Adsorbate on BrÃ,nsted Acidic Sulfated Zirconia: A Molecular Supported Organohafnium Catalyst for Olefin Homo- and Co-Polymerization. ACS Catalysis, 2018, 8, 4893-4901.	11.2	21
25	Molecular Mechanism of Small-Molecule Inhibitors in Blocking the PD-1/PD-L1 Pathway through PD-L1 Dimerization. International Journal of Molecular Sciences, 2021, 22, 4766.	4.1	21
26	Active sites deterioration of MgCl2-supported catalyst induced by the electron donor extraction by alkylaluminium. Polymer International, 2002, 51, 781-784.	3.1	20
27	A novel SiO2-supported inorganic and organic hybrid chromium-based catalyst for ethylene polymerization. Journal of Molecular Catalysis A, 2012, 358, 10-22.	4.8	20
28	Mechanistic Aspects of Acrylic Acid Formation from CO ₂ –Ethylene Coupling over Palladium―and Nickelâ€based Catalysts. ChemCatChem, 2018, 10, 1420-1430.	3.7	20
29	Effects of Bisphenol A on reproductive toxicity and gut microbiota dysbiosis in male rats. Ecotoxicology and Environmental Safety, 2022, 239, 113623.	6.0	20
30	High-resolution XPS and DFT investigations into Al-modified Phillips CrOx/SiO2 catalysts. Journal of Molecular Catalysis A, 2015, 401, 1-12.	4.8	19
31	DFT and PIO study of the influences of Mo valance state and surface hydroxyl on supported-MoOx catalysts for ethylene polymerization. Journal of Molecular Catalysis A, 2010, 321, 50-60.	4.8	18
32	Ethylene/1â€Hexene Copolymerization with A Novel SiO ₂ â€Supported Inorganic and Organic Hybrid Chromiumâ€based Catalyst. Macromolecular Reaction Engineering, 2013, 7, 254-266.	1.5	17
33	Effect of short-chain branching on the tie chains and dynamics of bimodal polyethylene: Molecular dynamics simulation. European Polymer Journal, 2018, 103, 312-321.	5.4	17
34	What Triggered the Switching from Ethylene-Selective Trimerization into Tetramerization over the Cr/(2,2′-Dipicolylamine) Catalysts?. ACS Catalysis, 2019, 9, 10519-10527.	11.2	17
35	A Novel (SiO ₂ /MgO/MgCl ₂)·TiCl _{<i>x</i>} Ziegler – Natta Catalyst for Ethylene and Ethylene/1â€Hexene Polymerization. Macromolecular Chemistry and Physics, 2015, 216, 1472-1482.	2.2	16
36	Synergistic toughening of polypropylene with ultra-high molecular weight polyethylene and elastomer-olefin block copolymers. RSC Advances, 2019, 9, 23994-24002.	3.6	16

#	Article	IF	CITATIONS
37	Improvement of the photostability of isotactic polypropylene by the incorporation of ethylene. Journal of Applied Polymer Science, 2002, 86, 1863-1867.	2.6	15
38	Experimental and Computational Approaches on the Isospecific Role of Monoesterâ€Type Internal Electron Donor for TiCl ₄ /MgCl ₂ Zieglerâ€Natta Catalysts. Macromolecular Symposia, 2007, 260, 42-48.	0.7	14
39	Experimental and theoretical studies on CO2 and propylene oxide (PO) copolymerization catalyzed by ZnEt2–glycerine–Y(CCl3COO)3 ternary catalyst. Journal of Organometallic Chemistry, 2014, 753, 63-71.	1.8	14
40	Molecular dynamics study of the isothermal crystallization mechanism of polyethylene chain: the combined effects of chain length and temperature. Journal of Molecular Modeling, 2016, 22, 67.	1.8	14
41	The First Vanadium-Oxide-Based UHMWPE Catalyst Supported on Chemically Modified Silica Gel. Macromolecular Chemistry and Physics, 2017, 218, 1600443.	2.2	14
42	Mechanistic Understanding on the Role of Cu Species over the CuO <i>_x</i> /TiO ₂ Catalyst for CO ₂ Photoreduction. ACS Omega, 2020, 5, 18050-18063.	3.5	14
43	Mechanistic Study on Effect of Electron Donors in Propylene Polymerization Using the Ziegler–Natta Catalyst. Journal of Physical Chemistry C, 2021, 125, 8533-8542.	3.1	14
44	Effect of Alkyl Aluminums on Ethylene Polymerization Reactions with a Crâ€V Bimetallic Catalyst. Macromolecular Reaction Engineering, 2018, 12, 1700059.	1.5	13
45	Dominant Effects of Short-Chain Branching on the Initial Stage of Nucleation and Formation of Tie Chains for Bimodal Polyethylene as Revealed by Molecular Dynamics Simulation. Polymers, 2019, 11, 1840.	4.5	13
46	Kinetic investigation of propene polymerization with stopped-flow method. Macromolecular Symposia, 2001, 165, 3-10.	0.7	12
47	Structural Interpretation of Eyring Activation Parameters for Tensile Yielding Behavior of Isotactic Polypropylene Solids. Journal of Macromolecular Science - Physics, 2015, 54, 1196-1210.	1.0	12
48	Vanadium Modification Effects on the (SiO ₂ /MgO/MgCl ₂)•TiCl <i>_x</i> Ziegler-Natta Polyethylene Catalyst. Macromolecular Reaction Engineering, 2016, 10, 246-260.	1.5	12
49	Molecular Mechanism of Food-Derived Polyphenols on PD-L1 Dimerization: A Molecular Dynamics Simulation Study. International Journal of Molecular Sciences, 2021, 22, 10924.	4.1	12
50	Switching from ethylene polymerization to nonselective oligomerization over a homogeneous model catalyst: A triphenylsiloxy complex of chromium(VI). Journal of Organometallic Chemistry, 2012, 699, 48-55.	1.8	11
51	Insight into the reaction mechanisms between CO2 and epoxides over Zn(II) phenoxide catalytic system – A DFT study. Journal of Organometallic Chemistry, 2015, 775, 67-75.	1.8	11
52	Hierarchical structure manipulation of UHMWPE/HDPE fibers through in-reactor blending with Cr/V bimetallic catalysts. Composites Science and Technology, 2019, 175, 46-54.	7.8	11
53	Local thermal degradation behavior of heterophasic polypropylene copolymers. Journal of Applied Polymer Science, 2006, 100, 1831-1835.	2.6	10
	Short Chain Branches Distribution Characterization of Ethylene/13€Hevene Consymmets by Using		

54 Short Chain Branches Distribution Characterization of Ethylene/1â€Hexene Copolymers by Using TREF + ¹³Câ€NMR and TREF + SC Methods. Macromolecular Symposia, 2012, 312, 63-71. ¹⁰

#	Article	IF	CITATIONS
55	2D-QSPR/DFT studies of aryl-substituted PNP-Cr-based catalyst systems for highly selective ethylene oligomerization. Journal of Molecular Modeling, 2014, 20, 2129.	1.8	9
56	Effect of Fluorideâ€Modification on the Phillips Cr/SiO ₂ Catalyst for Ethylene Polymerization. ChemCatChem, 2017, 9, 3364-3373.	3.7	9
57	Peculiarities of Ethylene Polymerization Kinetics with an Imido-Vanadium/Silyl-Chromate Bimetallic Catalyst: Effect of Polymerization Conditions. Industrial & Engineering Chemistry Research, 2017, 56, 6164-6175.	3.7	9
58	Plausible guard effect on the active sites of heterogeneous Ziegler–Natta catalyst by coordinating monomers and growing polymer chains in the initial stage of propene polymerization. Polymer International, 2004, 53, 723-727.	3.1	8
59	One pot synthesis of bimodal UHMWPE/HDPE inâ€reactor blends with Cr/V bimetallic catalysts. Journal of Polymer Science Part A, 2017, 55, 3404-3412.	2.3	8
60	Insights into the Baseâ€Assisted Acrylate Formation from CO ₂ /C ₂ H ₄ Coupling by Pd―and Ni atalyst: A DFT Mechanistic Study. ChemCatChem, 2018, 10, 5669-5678.	3.7	8
61	Molecular dynamics simulation of shish-kebab crystallization of polyethylene: Unraveling the effects of molecular weight distribution. Journal of Chemical Physics, 2019, 150, 184114.	3.0	8
62	Novel SiO 2 ‣upported Chromium Oxide/Chromocene Dual Site Catalysts for Synthesis of Bimodal UHMWPE/HDPE in Reactor Alloys. Macromolecular Chemistry and Physics, 2020, 221, 1900503.	2.2	8
63	Copolyesters of ε-caprolactone and <scp>l</scp> -lactide catalyzed by a tetrabutylammonium phthalimide- <i>N</i> -oxyl organocatalyst. RSC Advances, 2021, 11, 19021-19028.	3.6	8
64	Unravelling the Role of Alâ€alkyl Cocatalyst for the VO _x /SiO ₂ Ethylene Polymerization Catalyst: Diethylaluminum Chloride Vs. Triethylaluminum. ChemCatChem, 2021, 13, 2278-2292.	3.7	8
65	Understanding the Role of Sulfonyl Amine Donors in Propylene Polymerization Using MgCl ₂ -Supported Ziegler–Natta Catalyst. Journal of Physical Chemistry C, 2022, 126, 8655-8666.	3.1	8
66	Effects of Various Preparation and Polymerization Procedures on the Isospecific Nature of TiCl3-Based Polypropylene Catalysts. Polymer Bulletin, 2005, 54, 225-236.	3.3	7
67	Supporting mechanism of non-toxic chromium (III) acetate on silica for preparation of Phillips ethylene polymerization catalysts. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 660-665.	1.5	7
68	Improvement of Mechanical Properties and Ultraviolet Resistance of Polyethylene Pipe Materials Using High Density Polyethylene Matrix Grafted Carbon Black. Journal of Macromolecular Science - Physics, 2012, 51, 298-312.	1.0	7
69	Improvement of interfacial interaction, dispersion, and properties of chlorosulfonated polyethylene/sio ₂ nanocomposites using CSPEâ€ <i>g</i> â€6io ₂ nanoparticles synthesized under ultrasonics. Polymer Composites, 2012, 33, 940-950.	4.6	7
70	Effects of Addition of Ultra-High Molecular Weight Polyethylene on Tie-Molecule and Crystallization Behavior of Unimodal PE-100 Pipe Materials. Journal of Macromolecular Science - Physics, 2016, 55, 1007-1021.	1.0	7
71	A Monte Carlo Method to Quantify the Effect of Reactor Residence Time Distribution on Polyolefins Made with Heterogeneous Catalysts: Part Ill—Particle Composition Distribution Effects. Macromolecular Reaction Engineering, 2018, 12, 1800051.	1.5	7
72	A Monte Carlo Method to Quantify the Effect of Reactor Residence Time Distribution on Polyolefins Made with Heterogeneous Catalysts: Part IV—Intraparticle Transfer Resistance Effects. Macromolecular Reaction Engineering, 2018, 12, 1800054.	1.5	7

#	Article	IF	CITATIONS
73	Molecular dynamics study of polyethylene chain non-isothermal crystallisation: effects of chain length and branch structure. Molecular Simulation, 2019, 45, 967-974.	2.0	7
74	New strategies for synthesis of aminoâ€functionalized poly(propylene carbonate) over SalenCo ^(III) Cl catalyst. Journal of Polymer Science, 2020, 58, 1325-1337.	3.8	7
75	Efficient cycloaddition of CO2 and epoxides to cyclic carbonates using salen-based covalent organic framework as a heterogeneous catalyst. Journal of Porous Materials, 2022, 29, 1253-1263.	2.6	7
76	Stepwise polymerization of propylene and ethylene with Cr(acetylacetonate)3/MgCl2-ethylbenzoate/diethylaluminium chloride catalyst system. Polymer International, 2003, 52, 29-34.	3.1	6
77	Influence of primary structure on thermal oxidative degradation of polypropylene impact copolymer. Polymer Bulletin, 2005, 55, 141-147.	3.3	6
78	High temperature polymerization of propylene catalyzed by MgCl2-supported Ziegler–Natta catalyst with various cocatalysts. Journal of Applied Polymer Science, 2006, 100, 1978-1982.	2.6	6
79	CRYSTAF Analysis of Polyethylene Synthesized with Phillips Catalyst. Macromolecular Symposia, 2009, 285, 74-80.	0.7	6
80	Ethylene Polymerization over MgCl ₂ /SiO ₂ Bi‣upported Ziegler–Natta Hybrid Titanium/Vanadium Catalysts. Macromolecular Chemistry and Physics, 2017, 218, 1700027.	2.2	6
81	New Approaches for the Development of Highly Stable Polypropylene. Macromolecular Symposia, 2004, 214, 299-306.	0.7	5
82	Effects of Alkyl Aluminum on SiO ₂ â€Supported Silylâ€Chromate(Cr)/Imidoâ€Vanadium(V) Bimetallic Catalysts for Producing Bimodal Polyethylene. Macromolecular Reaction Engineering, 2017, 11, 1700006.	1.5	5
83	Remarkable Promotion Effect of Sulfation over the SiO ₂ ‣upported Vanadiumâ€Oxideâ€Based Catalysts for UHMWPE. Macromolecular Chemistry and Physics, 2017, 218, 1700236.	2.2	5
84	Reinforcing mechanism of a novel hydrophilic nano-carbon black in natural rubber latex. Journal of Macromolecular Science - Physics, 2017, 56, 762-774.	1.0	5
85	Computational Insights into the Multisite Nature of the Phillips CrO <i>_x</i> /SiO ₂ Catalyst for Ethylene Polymerization: The Perspective of Chromasiloxane Ring Size and F Modification. ACS Catalysis, 2022, 12, 3589-3603.	11.2	5
86	Plausible Mechanism for the Formation and Transformation of Active Sites on Novel Phillips Type Catalyst with New Organo-siloxane Ligand. Studies in Surface Science and Catalysis, 2006, 161, 225-228.	1.5	4
87	Effect of Alâ€alkyl cocatalyst on ethylene polymerization behavior using silyl chromate (SC)/SiO ₂ catalyst. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 539-546.	1.5	4
88	Optimization of the Preparation Temperature for the Novel (SiO ₂ /MgO/MgCl ₂)â‹TiCl <i>_x</i> Ziegler–Natta Polyethylene Catalyst. Macromolecular Reaction Engineering, 2016, 10, 567-576.	1.5	4
89	Toward the Optimization of a Crâ€V Bimetallic Catalyst for Producing Bimodal Polyethylene: Effect of Vanadium Content and Calcination Temperature. Macromolecular Chemistry and Physics, 2018, 219, 1800021.	2.2	4
90	Novel SiO 2 ‣upported Chromocene and Vanadium Bimetallic Catalysts Producing Bimodal Polyethylene. Macromolecular Chemistry and Physics, 2020, 221, 2000067.	2.2	4

#	Article	IF	CITATIONS
91	Why could the CrOx/SiO2 and VOx/SiO2 catalysts show so different behaviors in ethylene polymerization? A theoretical approach. Molecular Catalysis, 2020, 493, 111090.	2.0	4
92	CrV Bimetallic Phillips Catalyst Prepared by Citric Acidâ€Assisted Impregnation on Ethylene Polymerization. Macromolecular Chemistry and Physics, 2020, 221, 2000010.	2.2	4
93	A Novel SiO ₂ â€Supported Fluorine Modified Chromium–Vanadium Bimetallic Catalyst for Ethylene Polymerization and Ethylene/1â€Hexene Copolymerization. Macromolecular Reaction Engineering, 2017, 11, 1600055.	1.5	3
94	Effects of different ultrahigh molecular weight polyethylene contents on the formation and evolution of hierarchical crystal structure of highâ€density polyethylene/ultrahigh molecular weight polyethylene blend fibers. Journal of Polymer Science, 2020, 58, 2278-2291.	3.8	3
95	Evaluation and Control of the Molar Mass Bimodality and Properties of Polyethylene from Novel Chromoceneâ€Based Dual Sites Catalysts. Macromolecular Chemistry and Physics, 2021, 222, 2000434.	2.2	3
96	Ligand-Induced Product Switching between 4-Methyl-1-pentene and 2-Methyl-1-pentene in Bis(imino)pyridine/V(III)-Catalyzed Propylene Dimerization: Cossee–Arlman Versus Metallacycle Mechanism. Organometallics, 2021, 40, 1682-1691.	2.3	3
97	Effects of Silica Particles on the Transparency of Polypropylene Based Nanocomposites. Studies in Surface Science and Catalysis, 2006, 161, 237-240.	1.5	2
98	A Complexed Initiating System AlCl3·Phenetole/TiCl4·H2O with Dominant Synergistic Effect for Efficient Synthesis of High Molecular Weight Polyisobutylene. Polymers, 2019, 11, 2121.	4.5	2
99	Study of Silicaâ€Supported Chromocene Catalysts for Ethylene Polymerization. Macromolecular Chemistry and Physics, 2020, 221, 2000181.	2.2	2
100	Mechanistic Studies of Reduction and Initiation over the Vanadium-Oxide Polyethylene Catalyst. Journal of Physical Chemistry C, 2021, 125, 2393-2402.	3.1	2
101	Gas phase ethylene polymerization over SiO2-supported organosilyl chromate UCC S-2 catalyst using a high-speed stirred-autoclave reactor. Frontiers of Chemical Science and Engineering, 2011, 5, 89-95.	4.4	1
102	Mechanistic study of vanadium-modified and sulfation-modified Phillips catalyst. Molecular Catalysis, 2021, 513, 111777.	2.0	1
103	Morphology and Mechanical Properties of Quenched Polypropylene/SiO ₂ Nanocomposite Films. Seikei-Kakou, 2004, 16, 617-622.	0.0	1
104	Kinetics and Mechanism Comparison between Cr/Tiâ€Based Bimetallic and Tiâ€Based Monometallic Catalysts for Ethylene Polymerization. Macromolecular Reaction Engineering, 2021, 15, 2000041.	1.5	0