
Maria del Rayo Camacho-Corona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523252/publications.pdf Version: 2024-02-01

Maria del Rayo

#	Article	IF	CITATIONS
1	Chemistry and Pharmacology of Citrus sinensis. Molecules, 2016, 21, 247.	3.8	119
2	Activity against drug resistantâ€ŧuberculosis strains of plants used in Mexican traditional medicine to treat tuberculosis and other respiratory diseases. Phytotherapy Research, 2008, 22, 82-85.	5.8	103
3	Chemical Composition of Hexane Extract of Citrus aurantifolia and Anti-Mycobacterium tuberculosis Activity of Some of Its Constituents. Molecules, 2012, 17, 11173-11184.	3.8	78
4	Antibacterial and Antimycobacterial Lignans and Flavonoids from <i>Larrea tridentata</i> . Phytotherapy Research, 2012, 26, 1957-1960.	5.8	64
5	Oxoaporphine Alkaloids and Quinones from Stephania dinklagei and Evaluation of Their Antiprotozoal Activities. Planta Medica, 2000, 66, 478-480.	1.3	61
6	Bioactive Compounds from Celaenodendron mexicanum. Planta Medica, 2000, 66, 463-468.	1.3	56
7	Antimycobacterial Activity of Constituents from Foeniculum vulgare Var. Dulce Grown in Mexico. Molecules, 2012, 17, 8471-8482.	3.8	51
8	lsolation, characterization and mode of antimicrobial action against <i>Vibrio cholerae</i> of methyl gallate isolated from <i>Acacia farnesiana</i> . Journal of Applied Microbiology, 2013, 115, 1307-1316.	3.1	51
9	In vitro activity ofTriclisia patens and some bisbenzylisoquinoline alkaloids against eishmania donovani andTrypanosoma brucei brucei. Phytotherapy Research, 2002, 16, 432-436.	5.8	42
10	Assessment of the Antiprotozoal Activity of Galphimia glauca and the Isolation of New Nor-secofriedelanes and Nor-friedelanes. Journal of Natural Products, 2002, 65, 1457-1461.	3.0	41
11	Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks. Journal of Chemical Information and Modeling, 2019, 59, 1109-1120.	5.4	39
12	Pinocembrine: A bioactive flavanone from Teloxys graveolens. Journal of Ethnopharmacology, 1991, 31, 383-389.	4.1	38
13	Terpenoids from Guarea rhophalocarpa. Phytochemistry, 2001, 56, 203-210.	2.9	36
14	Secondary metabolites from Hintonia latifloraâ~†. Phytochemistry, 1990, 29, 2037-2040.	2.9	35
15	In vitroAntiprotozoal and Cytotoxic Activities of Some Alkaloids, Quinones, Flavonoids, and Coumarins. Planta Medica, 2004, 70, 70-72.	1.3	35
16	The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Research Notes, 2009, 2, 95.	1.4	27
17	Vasodilator Activity of Compounds Isolated from Plants Used in Mexican Traditional Medicine. Molecules, 2018, 23, 1474.	3.8	23
18	A phenylstyrene from Hintonia latiflora. Phytochemistry, 1992, 31, 3199-3201.	2.9	22

Maria del Rayo

#	Article	IF	CITATIONS
19	Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. Journal of Ethnopharmacology, 2019, 230, 74-80.	4.1	22
20	Nuclear magnetic resonance spectroscopy data of isolated compounds from Acacia farnesiana (L) Willd fruits and two esterified derivatives. Data in Brief, 2019, 22, 255-268.	1.0	20
21	Chemical Studies on Mexican Plants Used in Traditional Medicine, V. Cucurbitacin Glucosides from Cigarrilla mexicana. Journal of Natural Products, 1988, 51, 836-839.	3.0	19
22	Potential Mechanism of Action of meso-Dihydroguaiaretic Acid on Mycobacterium tuberculosis H37Rv. Molecules, 2014, 19, 20170-20182.	3.8	15
23	Potential Mechanism of Action of 3′-Demethoxy-6-O-demethyl-isoguaiacin on Methicillin Resistant Staphylococcus aureus. Molecules, 2015, 20, 12450-12458.	3.8	15
24	Hepatoprotective effect of Leucophyllum frutescens on Wistar albino rats intoxicated with carbon tetrachloride. Annals of Hepatology, 2007, 6, 251-254.	1.5	12
25	Screening for antibacterial and antiprotozoal activities of crude extracts derived from Mexican medicinal plants. Tropical Journal of Obstetrics and Gynaecology, 2015, 12, 104.	0.3	12
26	Antibacterial and cytotoxic activities of new sphingolipids and other constituents isolated from Cissus incisa leaves. Heliyon, 2020, 6, e04671.	3.2	12
27	Triterpenes from Cigarrilla mexicana. Phytochemistry, 1988, 27, 1887-1889.	2.9	11
28	meso-Dihydroguaiaretic acid derivatives with antibacterial and antimycobacterial activity. Bioorganic and Medicinal Chemistry, 2017, 25, 5247-5259.	3.0	11
29	Hechtia glomerata Zucc: Phytochemistry and Activity of Its Extracts and Major Constituents Against Resistant Bacteria. Molecules, 2019, 24, 3434.	3.8	11
30	Antibacterial Activity of Cissus incisa Extracts against Multidrug- Resistant Bacteria. Current Topics in Medicinal Chemistry, 2020, 20, 318-323.	2.1	8
31	Mild C(sp)–H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. European Journal of Medicinal Chemistry, 2017, 138, 1-12.	5.5	7
32	Metabolic Profile and Evaluation of Biological Activities of Extracts from the Stems of Cissus trifoliata. International Journal of Molecular Sciences, 2020, 21, 930.	4.1	7
33	Synthesis and in vitro evaluation of antimycobacterial and cytotoxic activity of new α,β-unsaturated amide, oxazoline and oxazole derivatives from -serine. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127074.	2.2	7
34	Anti-giardia activity of hexane extract of <i>Citrus aurantifolia</i> (Christim) swingle and some of its constituents. Tropical Journal of Obstetrics and Gynaecology, 2015, 12, 55.	0.3	6
35	New cyclolignans of Larrea tridentata and their antibacterial and cytotoxic activities. Phytochemistry Letters, 2021, 43, 212-218.	1.2	6
36	Molecular docking, SAR analysis and biophysical approaches in the study of the antibacterial activity of ceramides isolated from Cissus incisa. Bioorganic Chemistry, 2021, 109, 104745.	4.1	5

Maria del Rayo

#	Article	IF	CITATIONS
37	Bioassay-Guided Identification of the Antiproliferative Compounds of Cissus trifoliata and the Transcriptomic Effect of Resveratrol in Prostate Cancer Pc3 Cells. Molecules, 2021, 26, 2200.	3.8	5
38	Larrea tridentata and its Biological Activities. Current Topics in Medicinal Chemistry, 2021, 21, 2352-2364.	2.1	5
39	Cytotoxic Fractions from Hechtia glomerata Extracts and p-Coumaric Acid as MAPK Inhibitors. Molecules, 2021, 26, 1096.	3.8	4
40	Immunomodulatory effects of Allium Sativum L. and its constituents against viral infections and metabolic diseases. Current Topics in Medicinal Chemistry, 2021, 21, .	2.1	4
41	Antimycobacterial compounds from <i>Nasturtium officinale</i> . Tropical Journal of Obstetrics and Gynaecology, 2016, 13, 31.	0.3	3
42	Synthesis, antimycobacterial evaluation, and QSAR analysis of meso-dihydroguaiaretic acid derivatives. Medicinal Chemistry Research, 2018, 27, 1026-1042.	2.4	3
43	UPLC–QTOF–MS analysis of cytotoxic and antibacterial extracts of Hechtia glomerata Zucc. Natural Product Research, 2020, , 1-5.	1.8	3
44	Antimicrobial and antileishmanial activities of extracts and some constituents from the leaves of Solanum chrysotrichum Schldl. Medicinal Chemistry Research, 2021, 30, 152-162.	2.4	2
45	Metabolomic Profile and Cytotoxic Activity of CissusÂincisa Leaves Extracts. Plants, 2021, 10, 1389.	3.5	2
46	4,4′-[(2R*,3R*,4R*,5R*)-3,4-Dimethyltetrahydrofuran-2,5-diyl]diphenol. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3019-o3020.	0.2	1
47	2,2′-Dimethoxy-4,4′-[rel-(2R,3S)-2,3-dimethylbutane-1,4-diyl]diphenol. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1279-o1279.	0.2	1
48	Amino ether analogues of 4,4′-dihydroxy-3-methoxy-6,7′-cyclolignan and their activity against drug-resistant bacteria. Phytochemistry Letters, 2022, 50, 57-60.	1.2	1
49	Evaluación antimicrobiana de un extracto metanólico de Beauveria bassian a contra bacterias patógenas de importancia nosocomial. Ars Pharmaceutica, 2019, 60, .	0.3	0