
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523097/publications.pdf Version: 2024-02-01

LIANSEN HE

#	Article	IF	CITATIONS
1	POSSIBLE EVIDENCE OF ALFVÉN-CYCLOTRON WAVES IN THE ANGLE DISTRIBUTION OF MAGNETIC HELICITY OF SOLAR WIND TURBULENCE. Astrophysical Journal, 2011, 731, 85.	- 4.5	176
2	DO OBLIQUE ALFVÉN/ION-CYCLOTRON OR FAST-MODE/WHISTLER WAVES DOMINATE THE DISSIPATION OF SOLAR WIND TURBULENCE NEAR THE PROTON INERTIAL LENGTH?. Astrophysical Journal Letters, 2012, 745, L8.	8.3	117
3	WHAT CAN WE LEARN ABOUT SOLAR CORONAL MASS EJECTIONS, CORONAL DIMMINGS, AND EXTREME-ULTRAVIOLET JETS THROUGH SPECTROSCOPIC OBSERVATIONS?. Astrophysical Journal, 2012, 748, 106.	4.5	97
4	Electron acceleration in the reconnection diffusion region: Cluster observations. Geophysical Research Letters, 2012, 39, .	4.0	95
5	ARE IRIS BOMBS CONNECTED TO ELLERMAN BOMBS?. Astrophysical Journal, 2016, 824, 96.	4.5	93
6	EXCITATION OF KINK WAVES DUE TO SMALL-SCALE MAGNETIC RECONNECTION IN THE CHROMOSPHERE?. Astrophysical Journal, 2009, 705, L217-L222.	4.5	92
7	Global maps of the magnetic field in the solar corona. Science, 2020, 369, 694-697.	12.6	92
8	EVIDENCE OF LANDAU AND CYCLOTRON RESONANCE BETWEEN PROTONS AND KINETIC WAVES IN SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2015, 800, L31.	8.3	87
9	Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma. Astrophysical Journal Letters, 2017, 836, L27.	8.3	85
10	GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH. Astrophysical Journal Letters, 2016, 823, L16.	8.3	82
11	OBSERVATION OF HIGH-SPEED OUTFLOW ON PLUME-LIKE STRUCTURES OF THE QUIET SUN AND CORONAL HOLES WITH <i>SOLAR DYNAMICS OBSERVATORY </i> /ATMOSPHERIC IMAGING ASSEMBLY. Astrophysical Journal, 2011, 736, 130.	4.5	78
12	Observations of turbulence within reconnection jet in the presence of guide field. Geophysical Research Letters, 2012, 39, .	4.0	78
13	KINETIC TURBULENCE IN THE TERRESTRIAL MAGNETOSHEATH: <i>CLUSTER</i> OBSERVATIONS. Astrophysical Journal Letters, 2014, 789, L28.	8.3	74
14	Frequently Occurring Reconnection Jets from Sunspot Light Bridges. Astrophysical Journal, 2018, 854, 92.	4.5	70
15	A statistical study of kineticâ€size magnetic holes in turbulent magnetosheath: MMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 8577-8588.	2.4	64
16	ON INTERMITTENT TURBULENCE HEATING OF THE SOLAR WIND: DIFFERENCES BETWEEN TANGENTIAL AND ROTATIONAL DISCONTINUITIES. Astrophysical Journal Letters, 2013, 772, L14.	8.3	52
17	SIGNATURES OF MAGNETIC RECONNECTION AT BOUNDARIES OF INTERPLANETARY SMALL-SCALE MAGNETIC FLUX ROPES. Astrophysical Journal, 2010, 720, 454-464.	4.5	49
18	RADIAL EVOLUTION OF THE WAVEVECTOR ANISOTROPY OF SOLAR WIND TURBULENCE BETWEEN 0.3 AND 1 AU. Astrophysical Journal, 2013, 773, 72.	4.5	49

#	Article	IF	CITATIONS
19	NUMERICAL SIMULATIONS OF CHROMOSPHERIC ANEMONE JETS ASSOCIATED WITH MOVING MAGNETIC FEATURES. Astrophysical Journal, 2013, 777, 16.	4.5	47
20	REPRODUCTION OF THE OBSERVED TWO-COMPONENT MAGNETIC HELICITY IN SOLAR WIND TURBULENCE BY A SUPERPOSITION OF PARALLEL AND OBLIQUE ALFVÉN WAVES. Astrophysical Journal, 2012, 749, 86.	4.5	46
21	Observations of Whistler Waves Correlated with Electron-scale Coherent Structures in the Magnetosheath Turbulent Plasma. Astrophysical Journal, 2018, 861, 29.	4.5	46
22	Observations of the Electron Jet Generated by Secondary Reconnection in the Terrestrial Magnetotail. Astrophysical Journal, 2018, 862, 144.	4.5	43
23	Cool and Hot Components of a Coronal Bright Point. Astrophysical Journal, 2008, 681, L121-L124.	4.5	42
24	LARGE-AMPLITUDE ALFVÉN WAVE IN INTERPLANETARY SPACE: THE <i>WIND</i> SPACECRAFT OBSERVATIONS. Astrophysical Journal, 2012, 746, 147.	4.5	41
25	PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES. Astrophysical Journal Letters, 2015, 813, L30.	8.3	40
26	THE NASCENT FAST SOLAR WIND OBSERVED BY THE EUV IMAGING SPECTROMETER ON BOARD HINODE. Astrophysical Journal Letters, 2010, 709, L88-L93.	8.3	39
27	Direct Measurement of the Dissipation Rate Spectrum around Ion Kinetic Scales in Space Plasma Turbulence. Astrophysical Journal, 2019, 880, 121.	4.5	38
28	THE INFLUENCE OF INTERMITTENCY ON THE SPECTRAL ANISOTROPY OF SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2014, 783, L9.	8.3	37
29	SOLAR WIND â^1⁄420–200 keV SUPERHALO ELECTRONS AT QUIET TIMES. Astrophysical Journal Letters, 2015, 803, L2.	8.3	36
30	Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks. Astrophysical Journal, 2017, 838, 2.	4.5	36
31	Spectra of Diffusion, Dispersion, and Dissipation for Kinetic Alfvénic and Compressive Turbulence: Comparison between Kinetic Theory and Measurements from MMS. Astrophysical Journal, 2020, 898, 43.	4.5	36
32	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	7.7	36
33	MMS observations of electron scale magnetic cavity embedded in proton scale magnetic cavity. Nature Communications, 2019, 10, 1040.	12.8	35
34	UPFLOWS IN FUNNEL-LIKE LEGS OF CORONAL MAGNETIC LOOPS. Astrophysical Journal, 2009, 704, 883-890.	4.5	34
35	SELF-ABSORPTION IN THE SOLAR TRANSITION REGION. Astrophysical Journal, 2015, 811, 48.	4.5	33
36	NUMERICAL SIMULATION OF FAST-MODE MAGNETOSONIC WAVES EXCITED BY PLASMOID EJECTIONS IN THE SOLAR CORONA. Astrophysical Journal, 2015, 800, 111.	4.5	33

#	Article	IF	CITATIONS
37	Statistical Properties of Solar Wind Upstream of Mars: MAVEN Observations. Astrophysical Journal, 2021, 911, 113.	4.5	33
38	Kinetic simulations of secondary reconnection in the reconnection jet. Journal of Geophysical Research: Space Physics, 2015, 120, 6188-6198.	2.4	30
39	SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND. Astrophysical Journal, 2015, 805, 176.	4.5	29
40	Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations. Astrophysical Journal Letters, 2021, 915, L8.	8.3	29
41	Modeling of Solar Wind in the Coronal Funnel with Mass and Energy Supplied at 5ÂMm. Solar Physics, 2008, 250, 147-158.	2.5	28
42	INJECTION OF PLASMA INTO THE NASCENT SOLAR WIND VIA RECONNECTION DRIVEN BY SUPERGRANULAR ADVECTION. Astrophysical Journal, 2013, 770, 6.	4.5	28
43	The Origin of Solar Filament Plasma Inferred from In Situ Observations of Elemental Abundances. Astrophysical Journal Letters, 2017, 836, L11.	8.3	28
44	Plasma Heating and Alfvénic Turbulence Enhancement During Two Steps of Energy Conversion in Magnetic Reconnection Exhaust Region of Solar Wind. Astrophysical Journal, 2018, 856, 148.	4.5	28
45	Flame-like Ellerman Bombs and Their Connection to Solar Ultraviolet Bursts. Astrophysical Journal Letters, 2019, 875, L30.	8.3	28
46	Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfvén Waves and Alfvén Ion Cyclotron Waves. Astrophysical Journal Letters, 2020, 897, L3.	8.3	28
47	QUIET-TIME SUPRATHERMAL (â^¼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND. Astrophysical Journal, 2016, 820, 22.	4.5	27
48	OCCURRENCE RATES AND HEATING EFFECTS OF TANGENTIAL AND ROTATIONAL DISCONTINUITIES AS OBTAINED FROM THREE-DIMENSIONAL SIMULATION OF MAGNETOHYDRODYNAMIC TURBULENCE. Astrophysical Journal Letters, 2015, 804, L43.	8.3	24
49	SCALE-DEPENDENT NORMALIZED AMPLITUDE AND WEAK SPECTRAL ANISOTROPY OF MAGNETIC FIELD FLUCTUATIONS IN THE SOLAR WIND TURBULENCE. Astrophysical Journal, 2016, 816, 15.	4.5	24
50	Formation and Properties of Tangential Discontinuities in Three-dimensional Compressive MHD Turbulence. Astrophysical Journal, 2017, 851, 121.	4.5	24
51	Diagnosing the Magnetic Field Structure of a Coronal Cavity Observed during the 2017 Total Solar Eclipse. Astrophysical Journal, 2018, 856, 21.	4.5	24
52	Coronal Microjets in Quiet-Sun Regions Observed with the Extreme Ultraviolet Imager on Board the Solar Orbiter. Astrophysical Journal Letters, 2021, 918, L20.	8.3	24
53	Separator reconnection with antiparallel/component features observed in magnetotail plasmas. Journal of Geophysical Research: Space Physics, 2013, 118, 6116-6126.	2.4	23
54	THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE. Astrophysical Journal, 2015, 809, 155.	4.5	22

#	Article	IF	CITATIONS
55	THE SPECTRAL FEATURES OF LOW-AMPLITUDE MAGNETIC FLUCTUATIONS IN THE SOLAR WIND AND THEIR COMPARISON WITH MODERATE-AMPLITUDE FLUCTUATIONS. Astrophysical Journal Letters, 2015, 810, L21.	8.3	22
56	Turbulence and wave transmission at an ICME-driven shock observed by the Solar Orbiter and Wind. Astronomy and Astrophysics, 2021, 656, A3.	5.1	21
57	Wave Composition, Propagation, and Polarization of Magnetohydrodynamic Turbulence within 0.3 au as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2020, 901, L3.	8.3	21
58	Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence. Astrophysical Journal, 2017, 836, 69.	4.5	20
59	Composition of Wave Modes in Magnetosheath Turbulence from Sub-ion to Sub-electron Scales. Astrophysical Journal, 2019, 878, 48.	4.5	20
60	The Ion Transition Range of Solar Wind Turbulence in the Inner Heliosphere: Parker Solar Probe Observations. Astrophysical Journal Letters, 2021, 909, L7.	8.3	20
61	Fast Magnetic Reconnection with Turbulence in High Lundquist Number Limit. Astrophysical Journal Letters, 2020, 901, L22.	8.3	20
62	Formation of Cool and Warm Jets by Magnetic Flux Emerging from the Solar Chromosphere to Transition Region. Astrophysical Journal, 2018, 852, 16.	4.5	19
63	Angular Independence of Break Position for Magnetic Power Spectral Density in Solar Wind Turbulence. Astrophysical Journal, 2018, 865, 89.	4.5	19
64	Electron Acceleration by ICME-driven Shocks at 1 au. Astrophysical Journal, 2019, 875, 104.	4.5	19
65	Observational Quantification of Three-dimensional Anisotropies and Scalings of Space Plasma Turbulence at Kinetic Scales. Astrophysical Journal, 2020, 898, 91.	4.5	19
66	MHD and Ion Kinetic Waves in Field-aligned Flows Observed by Parker Solar Probe. Astrophysical Journal, 2021, 922, 188.	4.5	19
67	The Fluid-like and Kinetic Behavior of Kinetic Alfvén Turbulence in Space Plasma. Astrophysical Journal, 2019, 870, 106.	4.5	18
68	Solar wind origins in coronal holes and in the quiet Sun. Advances in Space Research, 2010, 45, 303-309.	2.6	17
69	Influence of intermittency on the anisotropy of magnetic structure functions of solar wind turbulence. Journal of Geophysical Research: Space Physics, 2016, 121, 911-924.	2.4	17
70	2D Isotropic Feature of Solar Wind Turbulence as Shown by Self-correlation Level Contours at Hour Timescales. Astrophysical Journal, 2019, 871, 93.	4.5	17
71	Solar Origin of Compressive Alfvénic Spikes/Kinks as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2021, 913, L14.	8.3	17
72	KINETIC SIMULATION OF SLOW MAGNETOSONIC WAVES AND QUASI-PERIODIC UPFLOWS IN THE SOLAR CORONA. Astrophysical Journal, 2016, 825, 58.	4.5	16

#	Article	IF	CITATIONS
73	SUNWARD-PROPAGATING ALFVÉNIC FLUCTUATIONS OBSERVED IN THE HELIOSPHERE. Astrophysical Journal Letters, 2016, 824, L2.	8.3	15
74	SPECTRAL ANISOTROPY OF ELSÃ,,SSER VARIABLES IN TWO-DIMENSIONAL WAVE-VECTOR SPACE AS OBSERVED IN THE FAST SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2016, 816, L24.	8.3	15
75	Nature of Magnetic Holes above Ion Scales: A Mixture of Stable Slow Magnetosonic and Unstable Mirror Modes in a Double-polytropic Scenario?. Astrophysical Journal, 2018, 864, 35.	4.5	15
76	Formation of Macroscale Flux Transfer Events at Mercury. Astrophysical Journal Letters, 2020, 893, L18.	8.3	15
77	The upstreamâ€propagating Alfvénic fluctuations with power law spectra in the upstream region of the Earth's bow shock. Geophysical Research Letters, 2015, 42, 3654-3661.	4.0	14
78	Solar ultraviolet bursts in a coordinated observation of IRIS, Hinode and SDO. Science China Technological Sciences, 2019, 62, 1555-1564.	4.0	14
79	Isotropic Scaling Features Measured Locally in the Solar Wind Turbulence with Stationary Background Field. Astrophysical Journal, 2020, 892, 138.	4.5	14
80	Energy Supply for Heating the Slow Solar Wind Observed by Parker Solar Probe between 0.17 and 0.7 au. Astrophysical Journal Letters, 2020, 904, L8.	8.3	14
81	Observation of directional change of core field inside flux ropes within one reconnection diffusion region in the Earth's magnetotail. Science Bulletin, 2014, 59, 4797-4803.	1.7	13
82	Two cases of convecting structure in the slow solar wind turbulence. AIP Conference Proceedings, 2016, , .	0.4	13
83	Influence of Intermittency on the Quasi-perpendicular Scaling in Three-dimensional Magnetohydrodynamic Turbulence. Astrophysical Journal, 2017, 846, 49.	4.5	13
84	The Strongest Acceleration of >40 keV Electrons by ICME-driven Shocks at 1 au. Astrophysical Journal, 2018, 853, 89.	4.5	13
85	Coexistence of Slow-mode and Alfvén-mode Waves and Structures in 3D Compressive MHD Turbulence. Astrophysical Journal, 2018, 866, 41.	4.5	13
86	Self-consistent kinetic model of nested electron- and ion-scale magnetic cavities in space plasmas. Nature Communications, 2020, 11, 5616.	12.8	13
87	Multiple X-line Reconnection Observed in Mercury's Magnetotail Driven by an Interplanetary Coronal Mass Ejection. Astrophysical Journal Letters, 2020, 893, L11.	8.3	13
88	Three-Dimensional Anisotropy and Scaling Properties of Solar Wind Turbulence at Kinetic Scales in the Inner Heliosphere: Parker Solar Probe Observations. Astrophysical Journal Letters, 2022, 924, L21.	8.3	13
89	New views on the emission and structure of the solar transition region. New Astronomy Reviews, 2010, 54, 13-30.	12.8	12
90	On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence. Astrophysical Journal, 2018, 857, 136.	4.5	12

#	Article	IF	CITATIONS
91	Largeâ€Amplitude Electromagnetic Ion Cyclotron Waves and Density Fluctuations in the Flank of the Earth's Magnetosheath. Geophysical Research Letters, 2019, 46, 4545-4553.	4.0	12
92	PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION. Astrophysical Journal Letters, 2016, 831, L13.	8.3	11
93	<i>In-situ</i> observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas. Physics of Plasmas, 2016, 23, .	1.9	11
94	A multispacecraft study of a small flux rope entrained by rolling back magnetic field lines. Journal of Geophysical Research: Space Physics, 2017, 122, 6927-6939.	2.4	11
95	Dark Structures in Sunspot Light Bridges. Astrophysical Journal, 2018, 865, 29.	4.5	11
96	Modulation of Ion and Electron Pitch Angle in the Presence of Large-amplitude, Low-frequency, Left-hand Circularly Polarized Electromagnetic Waves Observed by MMS. Astrophysical Journal, 2018, 867, 58.	4.5	11
97	A Case for Electron-Astrophysics. Experimental Astronomy, 0, , 1.	3.7	11
98	Electron acceleration by whistler-mode waves around the magnetic null during 3D reconnection. Plasma Physics and Controlled Fusion, 2010, 52, 052001.	2.1	10
99	THE ANGULAR DISTRIBUTION OF SOLAR WIND SUPERHALO ELECTRONS AT QUIET TIMES. Astrophysical Journal Letters, 2015, 811, L8.	8.3	10
100	Ion and Electron Dynamics in the Presence of Mirror, Electromagnetic Ion Cyclotron, and Whistler Waves. Astrophysical Journal, 2019, 883, 185.	4.5	10
101	Case Study of Solar Wind Suprathermal Electron Acceleration at the Earth's Bow Shock. Astrophysical Journal Letters, 2020, 889, L2.	8.3	10
102	Contribution of Magnetic Reconnection Events to Energy Dissipation in Space Plasma Turbulence. Astrophysical Journal, 2021, 908, 237.	4.5	10
103	Formation of Solar Quiescent Coronal Loops through Magnetic Reconnection in an Emerging Active Region. Astrophysical Journal, 2021, 915, 39.	4.5	10
104	The solar wind plasma upstream of Mars observed by Tianwen-1: Comparison with Mars Express and MAVEN. Science China Earth Sciences, 2022, 65, 759-768.	5.2	10
105	Anisotropy of Magnetic Field Spectra at Kinetic Scales of Solar Wind Turbulence as Revealed by the Parker Solar Probe in the Inner Heliosphere. Astrophysical Journal Letters, 2022, 929, L6.	8.3	10
106	Energy occupation of waves and structures in 3D compressive MHD turbulence. Monthly Notices of the Royal Astronomical Society, 2019, 488, 859-867.	4.4	9
107	Fluctuation Amplitudes of Magnetic-field Directional Turnings and Magnetic-velocity Alignment Structures in the Solar Wind. Astrophysical Journal, 2020, 903, 72.	4.5	9
108	Numerical Study of Erosion, Heating, and Acceleration of theÂMagnetic Cloud as Impacted by Fast Shock. Astrophysical Journal, 2017, 842, 109.	4.5	8

#	Article	IF	CITATIONS
109	Dependence of 3D Self-correlation Level Contours on the Scales in the Inertial Range of Solar Wind Turbulence. Astrophysical Journal Letters, 2019, 883, L9.	8.3	8
110	Alfvénicity of Quiet-Sun-associated Wind during Solar Maximum. Astrophysical Journal, 2019, 871, 204.	4.5	8
111	Unified Quantitative Description of Solar Wind Turbulence Intermittency in Both Inertial and Kinetic Ranges. Astrophysical Journal, 2019, 873, 80.	4.5	8
112	Identification of the Nature of Electromagnetic Waves near the Proton-cyclotron Frequency in Solar-terrestrial Plasmas. Astrophysical Journal, 2020, 890, 17.	4.5	8
113	Magnetic Energy Transfer and Distribution between Protons and Electrons for Alfvénic Waves at Kinetic Scales in Wavenumber Space. Astrophysical Journal, 2020, 896, 47.	4.5	8
114	OBSERVATIONAL EVIDENCE FOR THE CAUSES AND CONSEQUENCES OF CHROMOSPHERIC RECONNECTION. Astrophysical Journal, 2015, 804, 69.	4.5	7
115	A Self-consistent Numerical Study of the Global Solar Wind Driven by the Unified Nonlinear Alfvén Wave. Solar Physics, 2016, 291, 953-963.	2.5	7
116	Turbulence and Heating in the Flank and Wake Regions of a Coronal Mass Ejection. Solar Physics, 2018, 293, 1.	2.5	7
117	Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence. Astrophysical Journal, 2018, 855, 69.	4.5	7
118	Energy Supply by Low-frequency Break Sweeping for Heating the Fast Solar Wind from 0.3 to 4.8 au. Astrophysical Journal, 2021, 912, 84.	4.5	7
119	Evolution of clustered magnetic nulls in a turbulent-like reconnection region in the magnetotail. Science Bulletin, 2016, 61, 1145-1150.	9.0	6
120	Discrete energetic (â^1⁄450–200 keV) electron events in the high-altitude cusp/polar cap/lobe. Science China Technological Sciences, 2017, 60, 1935-1940.	4.0	6
121	3D Feature of Self-correlation Level Contours at 10 ¹⁰ cm Scale in Solar Wind Turbulence. Astrophysical Journal, 2019, 882, 21.	4.5	6
122	Difference of Intermittency between Electric Field and Magnetic Field Fluctuations from Ion Scale Down to Sub-electron Scale in the Magnetosheath Turbulence. Astrophysical Journal, 2020, 893, 124.	4.5	6
123	Consistency of von Karman Decay Rate with the Energy Supply Rate and Heating Rate Observed by Parker Solar Probe. Astrophysical Journal, 2022, 926, 116.	4.5	6
124	Nature of turbulence, dissipation, and heating in space plasmas: From Alfvén waves to kinetic Alfvén waves. Journal of Geophysical Research: Space Physics, 2016, 121, 7349-7352.	2.4	5
125	A New Method to Comprehensively Diagnose Shock Waves in the Solar Atmosphere Based on Simultaneous Spectroscopic and Imaging Observations. Astrophysical Journal, 2018, 860, 99.	4.5	5
126	Observational evidences of wave excitation and inverse cascade in a distant Earth foreshock region. Science China Earth Sciences, 2019, 62, 619-630.	5.2	5

#	Article	IF	CITATIONS
127	Reconstruction Test of Turbulence Power Spectra in 3D Wavenumber Space with at Most 9 Virtual Spacecraft Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	5
128	Influence of Large-scale Field Structures on the Scaling Anisotropy in 3D MHD Turbulence. Astrophysical Journal, 2021, 920, 14.	4.5	5
129	Coherence of Ion Cyclotron Resonance in Damped Ion Cyclotron Waves in Space Plasmas. Astrophysical Journal, 2022, 928, 36.	4.5	5
130	The Yaglom Scaling of the Third-order Structure Functions in the Inner Heliosphere Observed by Helios 1 and 2. Astrophysical Journal, 2022, 927, 113.	4.5	5
131	A new method to identify flux ropes in space plasmas. Annales Geophysicae, 2018, 36, 1275-1283.	1.6	4
132	Frontiers to be explored by the Parker Solar Probe mission. Science China Technological Sciences, 2019, 62, 1481-1482.	4.0	4
133	A three-dimensional model of spiral null pair to form ion-scale flux ropes in magnetic reconnection region observed by Cluster. Physics of Plasmas, 2019, 26, 112901.	1.9	4
134	The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements. Astrophysical Journal, 2021, 910, 7.	4.5	4
135	Energy Conversion between Ions and Electrons through Ion Cyclotron Waves and Embedded Ion-scale Rotational Discontinuity in Collisionless Space Plasmas. Astrophysical Journal Letters, 2020, 904, L16.	8.3	4
136	3D Reconnection Geometries With Magnetic Nulls: Multispacecraft Observations and Reconstructions. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
137	Plasma draining and replenishing near a solar active region inferred from cross-correlation between radiation intensity and Doppler shift. Science China Earth Sciences, 2015, 58, 830-838.	5.2	3
138	A Study on Sunward Propagating Alfvénic Fluctuations With a Power Law Spectrum Observed by the Wind Spacecraft. Journal of Geophysical Research: Space Physics, 2017, 122, 9768-9776.	2.4	3
139	Quiet-time Solar Wind Suprathermal Electrons of Different Solar Origins. Astrophysical Journal Letters, 2020, 896, L5.	8.3	3
140	Multi-scale pressure-balanced structures in the solar wind observed by WIND. Science Bulletin, 2012, 57, 1421-1428.	1.7	2
141	Mass and energy supply of a cool coronal loop near its apex. Astronomy and Astrophysics, 2018, 611, A49.	5.1	2
142	Growth of Outward Propagating Fast-magnetosonic/Whistler Waves in the Inner Heliosphere Observed by Parker Solar Probe. Astrophysical Journal, 2022, 933, 220.	4.5	2
143	Reexamination of data analysis for â^'2 spectral index at small ĴVB angle. AIP Conference Proceedings, 2016, , .	0.4	1
144	On the weakly anisotropic nature of the time-stationary turbulence in the solar wind. AIP Conference Proceedings, 2016, , .	0.4	1

JIANSEN HE

#	Article	IF	CITATIONS
145	Excitation of magnetohydrodynamic waves by plasmoids ejection in the solar corona. AIP Conference Proceedings, 2016, , .	0.4	Ο
146	Solar wind â^1⁄40.1-1.5 keV electrons at quiet times. AIP Conference Proceedings, 2016, , .	0.4	0
147	The angular distribution of solar wind â^1⁄420-200 keV superhalo electrons at quiet times. AlP Conference Proceedings, 2016, , .	0.4	0