
## Ensanya Ali Abou Neel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523042/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Demineralization–remineralization dynamics in teeth and bone. International Journal of Nanomedicine, 2016, Volume 11, 4743-4763.                                                                                                          | 3.3 | 433       |
| 2  | Bioactive functional materials: a perspective on phosphate-based glasses. Journal of Materials Chemistry, 2009, 19, 690-701.                                                                                                              | 6.7 | 289       |
| 3  | Silica-based mesoporous nanoparticles for controlled drug delivery. Journal of Tissue Engineering, 2013, 4, 204173141350335.                                                                                                              | 2.3 | 256       |
| 4  | Collagen — Emerging collagen based therapies hit the patient. Advanced Drug Delivery Reviews, 2013, 65, 429-456.                                                                                                                          | 6.6 | 249       |
| 5  | Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter, 2006, 2, 986.                                                                                                 | 1.2 | 179       |
| 6  | Tissue engineering in dentistry. Journal of Dentistry, 2014, 42, 915-928.                                                                                                                                                                 | 1.7 | 167       |
| 7  | Antimicrobial Galliumâ€Ðoped Phosphateâ€Based Glasses. Advanced Functional Materials, 2008, 18, 732-741.                                                                                                                                  | 7.8 | 161       |
| 8  | Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review.<br>Journal of Tissue Engineering, 2017, 8, 204173141771917.                                                                           | 2.3 | 149       |
| 9  | Structure and properties of strontium-doped phosphate-based glasses. Journal of the Royal Society<br>Interface, 2009, 6, 435-446.                                                                                                         | 1.5 | 135       |
| 10 | Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomaterialia, 2009, 5, 1198-1210.                                                                                                                   | 4.1 | 108       |
| 11 | In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials, 2007, 28, 2967-2977.                                                                                          | 5.7 | 106       |
| 12 | Controlled Microchannelling in Dense Collagen Scaffolds by Soluble Phosphate Glass Fibers.<br>Biomacromolecules, 2007, 8, 543-551.                                                                                                        | 2.6 | 103       |
| 13 | Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomaterialia, 2008, 4, 523-534.                                                                                            | 4.1 | 88        |
| 14 | The effect of composition on the structure of sodium borophosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 3671-3677.                                                                                                      | 1.5 | 87        |
| 15 | Nanotechnology in dentistry: prevention, diagnosis, and therapy. International Journal of<br>Nanomedicine, 2015, 10, 6371.                                                                                                                | 3.3 | 85        |
| 16 | Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution<br>behaviour and biological properties after crystallisation. Journal of Materials Science: Materials in<br>Medicine, 2014, 25, 47-53. | 1.7 | 62        |
| 17 | Development of remineralizing, antibacterial dental materials. Acta Biomaterialia, 2009, 5, 2525-2539.                                                                                                                                    | 4.1 | 60        |
| 18 | Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Materials Science and Engineering C, 2016, 60, 285-292.                                                         | 3.8 | 58        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effect of surface treatment on the bioactivity of nickel–titanium. Acta Biomaterialia, 2008, 4,<br>1969-1984.                                                                                          | 4.1  | 52        |
| 20 | Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications. Journal of Materials Science: Materials in Medicine, 2008, 19, 1669-1679. | 1.7  | 50        |
| 21 | Doping of a high calcium oxide metaphosphate glass with titanium dioxide. Journal of Non-Crystalline<br>Solids, 2009, 355, 991-1000.                                                                   | 1.5  | 50        |
| 22 | Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin. BioMed Research<br>International, 2017, 2017, 1-8.                                                                           | 0.9  | 44        |
| 23 | Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility.<br>Journal of Materials Science: Materials in Medicine, 2009, 20, 1339-1346.                         | 1.7  | 40        |
| 24 | Titanium and Strontium-doped Phosphate Glasses as Vehicles for Strontium Ion Delivery to Cells.<br>Journal of Biomaterials Applications, 2011, 25, 877-893.                                            | 1.2  | 30        |
| 25 | A Facile Synthesis Route to Prepare Microtubes from Phosphate Glass Fibres. Advanced Materials, 2007, 19, 2856-2862.                                                                                   | 11.1 | 29        |
| 26 | Physical properties and MAS-NMR studies of titanium phosphate-based glasses. Materials Chemistry and Physics, 2010, 120, 68-74.                                                                        | 2.0  | 28        |
| 27 | Biomedical Applications of Clay. Australian Journal of Chemistry, 2013, 66, 1315.                                                                                                                      | 0.5  | 28        |
| 28 | Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives. Acta Biomaterialia, 2012, 8, 313-320.                                 | 4.1  | 26        |
| 29 | Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties. Acta Biomaterialia, 2009, 5, 2072-2083.       | 4.1  | 24        |
| 30 | The effect of zinc and titanium on the structure of calcium–sodium phosphate based glass. Journal of<br>Non-Crystalline Solids, 2010, 356, 1319-1324.                                                  | 1.5  | 23        |
| 31 | Switching off angiogenic signalling: creating channelled constructs for adequate oxygen delivery in tissue engineered constructs. , 2010, 20, 274-281.                                                 |      | 23        |
| 32 | Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2–CaO–Na2O–P2O5<br>glasses. Journal of Materials Science: Materials in Medicine, 2008, 19, 1681-1685.                   | 1.7  | 21        |
| 33 | Nanomechanical evaluation of nickel–titanium surface properties after alkali and electrochemical treatments. Journal of the Royal Society Interface, 2008, 5, 1009-1022.                               | 1.5  | 21        |
| 34 | Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. Materials Science and Engineering C, 2014, 35, 307-313.                                 | 3.8  | 20        |
| 35 | Control of surface free energy in titanium doped phosphate based glasses by coâ€doping with zinc.<br>Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 392-407.       | 1.6  | 19        |
| 36 | Quantifying effects of interactions between polyacrylic acid and chlorhexidine in dicalcium phosphate – forming cements. Journal of Materials Chemistry B, 2014, 2, 1673-1680.                         | 2.9  | 19        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Engineering stable topography in dense bio-mimetic 3D collagen scaffolds. , 2012, 23, 28-40.                                                                                                          |     | 19        |
| 38 | Cell attachment and response to photocured, degradable bone adhesives containing tricalcium phosphate and purmorphamine. Acta Biomaterialia, 2011, 7, 2672-2677.                                      | 4.1 | 18        |
| 39 | Quantification of crystalline phases and measurement of phosphate chain lengths in a mixed phase sample by 31P refocused INADEQUATE MAS NMR. Chemical Physics Letters, 2008, 455, 178-183.            | 1.2 | 15        |
| 40 | <i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cells.<br>Journal of Biomedical Materials Research - Part A, 2010, 93A, 1596-1608.                      | 2.1 | 15        |
| 41 | Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives. Acta Biomaterialia, 2010, 6, 2695-2703. | 4.1 | 15        |
| 42 | Chemistry and Bioactivity of NeoMTA Plus™ versus MTA Angelus® Root Repair Materials. Journal of<br>Spectroscopy, 2017, 2017, 1-9.                                                                     | 0.6 | 15        |
| 43 | Setting reaction of new bioceramic root canal sealers. Spectroscopy Letters, 2018, 51, 426-430.                                                                                                       | 0.5 | 15        |
| 44 | <i>In Vitro</i> Biocompatibility and Mechanical Performance of Titanium Doped High Calcium Oxide<br>Metaphosphate-Based Glasses. Journal of Tissue Engineering, 2010, 1, 390127.                      | 2.3 | 14        |
| 45 | Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Filler.<br>Advanced Engineering Materials, 2010, 12, 8298.                                                 | 1.6 | 13        |
| 46 | The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering.<br>Expert Opinion on Drug Delivery, 2015, 12, 869-887.                                          | 2.4 | 13        |
| 47 | Development of Conical Soluble Phosphate Glass Fibers for Directional Tissue Growth. Journal of<br>Biomaterials Applications, 2012, 26, 733-744.                                                      | 1.2 | 11        |
| 48 | Morphological and Spectroscopic Study of an Apatite Layer Induced by Fast-Set Versus Regular-Set<br>EndoSequence Root Repair Materials. Materials, 2019, 12, 3678.                                    | 1.3 | 11        |
| 49 | Glass microparticle―versus microsphereâ€filled experimental dental adhesives. Journal of Applied<br>Polymer Science, 2019, 136, 47832.                                                                | 1.3 | 10        |
| 50 | Impaired bacterial attachment to light activated Ni–Ti alloy. Materials Science and Engineering C, 2010,<br>30, 225-234.                                                                              | 3.8 | 9         |
| 51 | Identification of phases in partially crystallised Ti-, Sr- and Zn-containing sodium calcium phosphates by two-dimensional NMR. Materials Chemistry and Physics, 2009, 114, 1008-1015.                | 2.0 | 8         |
| 52 | Root maturation and dentin–pulp response to enamel matrix derivative in pulpotomized permanent<br>teeth. Journal of Tissue Engineering, 2014, 5, 204173141452170.                                     | 2.3 | 8         |
| 53 | Bonding of Clear Aligner Composite Attachments to Ceramic Materials: An In Vitro Study. Materials,<br>2022, 15, 4145.                                                                                 | 1.3 | 8         |
| 54 | Superfast Set, Strong and Less Degradable Mineral Trioxide Aggregate Cement. International Journal of Dentistry, 2017, 2017, 1-9.                                                                     | 0.5 | 6         |

| #  | Article                                                                                                                                                                                                                 | IF        | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 55 | Antibacterial effect of titanium dioxide-doped phosphate glass microspheres filled total-etch dental<br>adhesive on S. mutans biofilm. International Journal of Adhesion and Adhesives, 2021, 108, 102886.              | 1.4       | 6              |
| 56 | Biomimetic dentin repair with a dual-analogue phosphate glass-polyacrylate paste: A proof-of-concept.<br>Materials Chemistry and Physics, 2021, 266, 124539.                                                            | 2.0       | 6              |
| 57 | Setting kinetics and mechanical properties of flax fibre reinforced glass ionomer restorative materials. Journal of Biomedical Research, 2017, 31, 264.                                                                 | 0.7       | 6              |
| 58 | Surface characterisation of various bone cements prepared with functionalised<br>methacrylates/bioactive ceramics in relation to HOB behaviour. Acta Biomaterialia, 2006, 2, 143-154.                                   | 4.1       | 5              |
| 59 | Mineralized nodule formation in primary osteoblasts culture in titanium doped phosphate glass and<br>in-house prepared freeze dried demineralized bone extracts. Materials Chemistry and Physics, 2022, 276,<br>125425. | 2.0       | 5              |
| 60 | Biocompatibility and Antibacterial Action of Salvadora persica Extract as Intracanal Medication (In) Tj ETQq0 0 0                                                                                                       | rgBT_/Ove | rlogk 10 Tf 50 |
| 61 | Antibacterial, remineralising and matrix metalloproteinase inhibiting scandium-doped phosphate glasses for treatment of dental caries. Dental Materials, 2022, 38, 94-107.                                              | 1.6       | 4              |

| 62 | Effect of root canal medications on maturation and calcification of root canal dentin'<br>hydroxyapatite. Spectroscopy Letters, 2016, 49, 135-139.                                       | 0.5 | 3 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 63 | Effects of dentin modifiers on surface and mechanical properties of acid-etched dentin. International<br>Journal of Adhesion and Adhesives, 2018, 81, 43-47.                             | 1.4 | 3 |
| 64 | An Eggshell-Based Toothpaste as a Cost-Effective Treatment of Dentin Hypersensitivity. European<br>Journal of Dentistry, 2021, 15, 733-740.                                              | 0.8 | 3 |
| 65 | Antibacterial, remineralizing zinc oxide-doped phosphate-based glasses. Materials Letters, 2022, 306, 130813.                                                                            | 1.3 | 3 |
| 66 | Effect of sodium hypochlorite on adhesive charactersitics of dentin: A systematic review of laboratory-based testing. International Journal of Adhesion and Adhesives, 2019, 95, 102419. | 1.4 | 2 |
| 67 | Remineralization potential and biocompatibility of titanium dioxide-doped phosphate glasses.<br>Materials Letters, 2022, 309, 131456.                                                    | 1.3 | 2 |
| 68 | Brushite and Selfâ€Healing Flexible Polymerâ€< scp>Modified Brushite Bone Adhesives for Fibular<br>Osteotomy Repair. Advanced Engineering Materials, 2014, 16, 218-230.                  | 1.6 | 1 |
| 69 | Surface topography and mechanical properties of flax fibres modified glass ionomer restorative materials. Journal of Biomedical Engineering and Informatics, 2015, 1, 82.                | 0.2 | 1 |
| 70 | CHAPTER 7. Interfaces in Composite Materials. RSC Smart Materials, 2014, , 151-191.                                                                                                      | 0.1 | 0 |
| 71 | Effect of Curcumin Suspension and Vitamin C on Dentin Shear Bond Strength and Durability. A Pilot<br>Study. Open Dentistry Journal, 2021, 15, 540-546.                                   | 0.2 | 0 |
|    |                                                                                                                                                                                          |     |   |

72Odontogenic induction of human amniotic membrane scaffold for dental pulp regeneration.<br/>Materials Chemistry and Physics, 2022, 280, 125780.2.00