
Chun-kang Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/152299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hematopoietic cell transplantation in patients with myelodysplastic syndrome or acute myeloid leukemia arising from myelodysplastic syndrome: similar outcomes in patients with de novo disease and disease following prior therapy or antecedent hematologic disorders. Blood, 2007, 110, 1379-1387.	0.6	144
2	Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Annals of Hematology, 2011, 90, 643-653.	0.8	89
3	Iron overload promotes mitochondrial fragmentation in mesenchymal stromal cells from myelodysplastic syndrome patients through activation of the AMPK/MFF/Drp1 pathway. Cell Death and Disease, 2018, 9, 515.	2.7	81
4	<i>TP53</i> mutations predict decitabineâ€induced complete responses in patients with myelodysplastic syndromes. British Journal of Haematology, 2017, 176, 600-608.	1.2	63
5	Genomic landscape of CD34 ⁺ hematopoietic cells in myelodysplastic syndrome and gene mutation profiles as prognostic markers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8589-8594.	3.3	52
6	Genetic landscape of recurrent ASXL1, U2AF1, SF3B1, SRSF2, and EZH2 mutations in 304 Chinese patients with myelodysplastic syndromes. Tumor Biology, 2016, 37, 4633-4640.	0.8	43
7	Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes. European Journal of Haematology, 2014, 93, 476-486.	1.1	41
8	Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome. Haematologica, 2015, 100, 194-204.	1.7	40
9	Cellular senescence induced by S100A9 in mesenchymal stromal cells through NLRP3 inflammasome activation. Aging, 2019, 11, 9626-9642.	1.4	40
10	Exploration of the role of gene mutations in myelodysplastic syndromes through a sequencing design involving a small number of target genes. Scientific Reports, 2017, 7, 43113.	1.6	37
11	Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leukemia Research, 2017, 58, 55-62.	0.4	35
12	A Prospective Multicenter Clinical Observational Study on Vancomycin Efficiency and Safety With Therapeutic Drug Monitoring. Clinical Infectious Diseases, 2018, 67, S249-S255.	2.9	35
13	Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. American Journal of Translational Research (discontinued), 2016, 8, 3169-78.	0.0	34
14	Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in myelodysplastic syndromes. Nature Communications, 2015, 6, 8806.	5.8	30
15	Ribosomal protein L23 negatively regulates cellular apoptosis via the RPL23/Miz-1/c-Myc circuit in higher-risk myelodysplastic syndrome. Scientific Reports, 2017, 7, 2323.	1.6	30
16	Genomic loss of EZH2 leads to epigenetic modifications and overexpression of the HOX gene clusters in myelodysplastic syndrome. Oncotarget, 2016, 7, 8119-8130.	0.8	29
17	Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells. Cell Death and Disease, 2018, 9, 512.	2.7	25
18	Effect of low-dose cytarabine, homoharringtonine and granulocyte colony-stimulating factor priming regimen on patients with advanced myelodysplastic syndrome or acute myeloid leukemia transformed from myelodysplastic syndrome. Leukemia and Lymphoma, 2009, 50, 1461-1467.	0.6	22

#	Article	IF	CITATIONS
19	Xenogeneic immunosuppression of human umbilical cord mesenchymal stem cells in a major histocompatibility complex-mismatched allogeneic acute graft-versus-host disease murine model. European Journal of Haematology, 2011, 87, 235-243.	1.1	22
20	Efficacy and safety of CHG regimen (low-dose cytarabine, homoharringtonine with G-CSF priming) as induction chemotherapy for elderly patients with high-risk MDS or AML transformed from MDS. Journal of Cancer Research and Clinical Oncology, 2011, 137, 1563-1569.	1.2	22
21	Rigosertib as a selective anti-tumor agent can ameliorate multiple dysregulated signaling transduction pathways in high-grade myelodysplastic syndrome. Scientific Reports, 2014, 4, 7310.	1.6	22
22	Interleukin-17-producing CD4+ T lymphocytes are increased in patients with primary immune thrombocytopenia. Blood Coagulation and Fibrinolysis, 2016, 27, 301-307.	0.5	20
23	SF3B1-mutated myelodysplastic syndrome with ring sideroblasts harbors more severe iron overload and corresponding over-erythropoiesis. Leukemia Research, 2016, 44, 8-16.	0.4	20
24	Comparison of Immunological Abnormalities of Lymphocytes in Bone Marrow in Myelodysplastic Syndrome (MDS) and Aplastic Anemia (AA). Internal Medicine, 2010, 49, 1349-1355.	0.3	18
25	Over-expression of RPL23 in myelodysplastic syndromes is associated with apoptosis resistance of CD34+ cells and predicts poor prognosis and distinct response to CHG chemotherapy or decitabine. Annals of Hematology, 2012, 91, 1547-1554.	0.8	18
26	Impaired osteogenic differentiation of mesenchymal stem cells derived from bone marrow of patients with lower-risk myelodysplastic syndromes. Tumor Biology, 2014, 35, 4307-4316.	0.8	18
27	Model-based Evaluation of the Clinical and Microbiological Efficacy of Vancomycin: A Prospective Study of Chinese Adult In-house Patients. Clinical Infectious Diseases, 2018, 67, S256-S262.	2.9	18
28	High expression of the human equilibrative nucleoside transporter 1 gene predicts a good response to decitabine in patients with myelodysplastic syndrome. Journal of Translational Medicine, 2016, 14, 66.	1.8	17
29	MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-mediated epigenetic repression of p21. Cell Death and Disease, 2017, 8, e3126-e3126.	2.7	17
30	Overexpression of BMI1 confers clonal cells resistance to apoptosis and contributes to adverse prognosis in myelodysplastic syndrome. Cancer Letters, 2012, 317, 33-40.	3.2	16
31	Establishment and Validation of an Updated Diagnostic FCM Scoring System Based on Pooled Immunophenotyping in CD34+ Blasts and Its Clinical Significance for Myelodysplastic Syndromes. PLoS ONE, 2014, 9, e88706.	1.1	15
32	Low <scp>RPS</scp> 14 expression in MDS without 5q ―aberration confers higher apoptosis rate of nucleated erythrocytes and predicts prolonged survival and possible response to lenalidomide in lower risk nonâ€5q―patients. European Journal of Haematology, 2013, 90, 486-493.	1.1	14
33	Lenalidomide restores the osteogenic differentiation of bone marrow mesenchymal stem cells from multiple myeloma patients via deactivating Notch signaling pathway. Oncotarget, 2017, 8, 55405-55421.	0.8	13
34	Notch-Hes pathway mediates the impaired osteogenic differentiation of bone marrow mesenchymal stromal cells from myelodysplastic syndromes patients through the down-regulation of Runx2. American Journal of Translational Research (discontinued), 2015, 7, 1939-51.	0.0	13
35	High expression of APAF-1 elevates erythroid apoptosis in iron overload myelodysplastic syndrome. Tumor Biology, 2014, 35, 2211-2218.	0.8	12
36	Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation. Scientific Reports, 2017, 7, 43849.	1.6	12

#	Article	IF	CITATIONS
37	Increased PD-1/STAT1 ratio may account for the survival benefit in decitabine therapy for lower risk myelodysplastic syndrome. Leukemia and Lymphoma, 2017, 58, 969-978.	0.6	12
38	Decitabine treatment sensitizes tumor cells to T-cell-mediated cytotoxicity in patients with myelodysplastic syndromes. American Journal of Translational Research (discontinued), 2017, 9, 454-465.	0.0	12
39	ldentification of microRNA-regulated pathways using an integration of microRNA-mRNA microarray and bioinformatics analysis in CD34+ cells of myelodysplastic syndromes. Scientific Reports, 2016, 6, 32232.	1.6	11
40	Labile plasma iron, more practical and more sensitive to iron overload in myelodysplastic syndromes. Hematology, 2017, 22, 9-15.	0.7	11
41	A genetic development route analysis on MDS subset carrying initial epigenetic gene mutations. Scientific Reports, 2020, 10, 826.	1.6	11
42	U2AF1 mutation promotes tumorigenicity through facilitating autophagy flux mediated by FOXO3a activation in myelodysplastic syndromes. Cell Death and Disease, 2021, 12, 655.	2.7	11
43	The Evaluation of iron overload through hepcidin level and its related factors in myelodysplastic syndromes. Hematology, 2013, 18, 286-294.	0.7	10
44	Downregulation of p21 in Myelodysplastic Syndrome Is Associated With p73 Promoter Hypermethylation and Indicates Poor Prognosis. American Journal of Clinical Pathology, 2013, 140, 819-827.	0.4	10
45	Distinct Clinical and Experimental Characteristics in the Patients Younger than 60 Years Old with Myelodysplastic Syndromes. PLoS ONE, 2013, 8, e57392.	1.1	10
46	The prognostic impact of multiparameter flow cytometry immunophenotyping and cytogenetic aberrancies in patients with multiple myeloma. Hematology, 2016, 21, 152-161.	0.7	10
47	Cytogenetic response based on revised IPSS cytogenetic risk stratification and minimal residual disease monitoring by FISH in MDS patients treated with low-dose decitabine. Leukemia Research, 2013, 37, 1516-1521.	0.4	9
48	Differentiation and hematopoietic-support of clonal cells in myelodysplastic syndromes. Leukemia and Lymphoma, 2007, 48, 1353-1371.	0.6	8
49	Methylation of the p73 gene in patients with myelodysplastic syndromes: correlations with apoptosis and prognosis. Tumor Biology, 2013, 34, 165-172.	0.8	8
50	Efficacy and toxicity of decitabine versus CHG regimen (low-dose cytarabine, homoharringtonine and) Tj ETQq0 C retrospective study. Leukemia and Lymphoma, 2016, 57, 1367-1374.	0 rgBT /0 0.6	Overlock 10 T 8
51	Decitabine of Reduced Dosage in Chinese Patients with Myelodysplastic Syndrome: A Retrospective Analysis. PLoS ONE, 2014, 9, e95473.	1.1	8
52	Bone Marrow Mesenchymal Stem Cells in Myelodysplastic Syndromes: Cytogenetic Characterization. Acta Haematologica, 2012, 128, 170-177.	0.7	7
53	The biological behavior of SDF-1/CXCR4 in patients with myelodysplastic syndrome. Medical Oncology, 2012, 29, 1202-1208.	1.2	7
54	<i>NPM1</i> mutation with <i>DNMT3A</i> wild type defines a subgroup of MDS with particularly favourable outcomes after decitabine therapy. British Journal of Haematology, 2020, 189, 982-984.	1.2	7

#	Article	IF	CITATIONS
55	Selinexor plus low-dose dexamethasone in Chinese patients with relapsed/refractory multiple myeloma previously treated with an immunomodulatory agent and a proteasome inhibitor (MARCH): a phase II, single-arm study. BMC Medicine, 2022, 20, 108.	2.3	7
56	Aberration of <i>p73</i> promoter methylation in <i>de novo</i> myelodysplastic syndrome. Hematology, 2012, 17, 275-282.	0.7	6
57	Aberrant promoter methylation of <scp>D</scp> ab2 gene in myelodysplastic syndrome. European Journal of Haematology, 2012, 89, 469-477.	1.1	5
58	Clinical significance of hyaluronan levels and its pro-osteogenic effect on mesenchymal stromal cells in myelodysplastic syndromes. Journal of Translational Medicine, 2018, 16, 234.	1.8	5
59	AHR signaling pathway reshapes the metabolism of AML/MDS cells and potentially leads to cytarabine resistance. Acta Biochimica Et Biophysica Sinica, 2021, 53, 492-500.	0.9	5
60	Bone Marrow Fibrosis at Diagnosis and during the Course of Disease Is Associated with TP53 Mutations and Adverse Prognosis in Primary Myelodysplastic Syndrome. Cancers, 2022, 14, 2984.	1.7	5
61	Appropriate timing of Gâ€CSF use after mobilization chemotherapy significantly increases the yield of CD34+ cells in autoPBSCT. Journal of Clinical Apheresis, 2009, 24, 232-237.	0.7	4
62	The effect of the combination of bisphosphonates and conventional chemotherapy on bone metabolic markers in multiple myeloma patients. Hematology, 2012, 17, 255-260.	0.7	4
63	Integration Analysis of JAK2 or RUNX1 Mutation With Bone Marrow Blast Can Improve Risk Stratification in the Patients With Lower Risk Myelodysplastic Syndrome. Frontiers in Oncology, 2020, 10, 610525.	1.3	4
64	Comparative Study on Iron Content Detection by Energy Spectral CT and MRI in MDS Patients. Frontiers in Oncology, 2021, 11, 646946.	1.3	4
65	Aryl hydrocarbon receptor signaling pathway plays important roles in the proliferative and metabolic properties of bone marrow mesenchymal stromal cells. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1428-1439.	0.9	4
66	Clonality investigation of morphologically dysplastic hematopoietic cells in myelodysplastic syndrome marrows. International Journal of Hematology, 2008, 87, 176-183.	0.7	3
67	Results of the phase 2 MARCH Study: Oral ATC-010 (Selinexor) plus low dose dexamethasone in Chinese patients with relapsed/refractory multiple myeloma (RRMM) previously treated with an immunomodulatory agent (IMiD) and a proteasome inhibitor (PI) Journal of Clinical Oncology, 2021, 39, e20002-e20002.	0.8	3
68	Chidamide, a Novel Histone Deacetylase Inhibitor, Displays Potent Antitumor Activity Against MDS Cells Mainly through JAK2/STAT3 Signaling Inhibition. Blood, 2015, 126, 5233-5233.	0.6	3
69	IGF‑IR promotes clonal cell proliferation in myelodysplastic syndromes via inhibition of the MAPK pathway. Oncology Reports, 2020, 44, 1094-1104.	1.2	3
70	The efficacy and toxicity of the CHG priming regimen (low-dose cytarabine, homoharringtonine, and) Tj ETQqO and Clinical Oncology, 2019, 145, 3089-3097.	0 0 rgBT /0 1.2)verlock 10 Tf 2
71	Analysis of the influencing factors related to liver and cardiac iron overload in MDS patients detected by MRI in the real world. Hematology, 2021, 26, 123-133.	0.7	2
72	Decitabine Induces Change of Biological Traits in Myelodysplastic Syndromes via FOXO1 Activation.	1.1	2

Frontiers in Genetics, 2020, 11, 603956.

#	Article	IF	CITATIONS
73	Dynamics of epigenetic regulator gene BCOR mutation and response predictive value for hypomethylating agents in patients with myelodysplastic syndrome. Clinical Epigenetics, 2021, 13, 169.	1.8	2
74	Can Human Umbilical Cord Mesenchymal Stem Cells Inhibit Acute Graft-Versus-Host-Disease In Murine Allogeneic Bone Marrow Transplantation?. Blood, 2010, 116, 4703-4703.	0.6	2
75	Low RPS14 Expression in MDS without 5q- Aberration Is Associated with Increased Apoptosis of Erythrocytes and Predicts Prolonged Survival and Possible Response to Lenalidomide in Lower-Risk Patients. Blood, 2012, 120, 698-698.	0.6	2
76	DHX9 Mutations Are Identified As a Novel Recurrent Event in Patients with Myelodysplastic Syndromes and Closely Related to Bone Marrow Failure. Blood, 2015, 126, 1651-1651.	0.6	2
77	Decitabine activates type I interferon signaling to inhibit p53â€deficient myeloid malignant cells. Clinical and Translational Medicine, 2021, 11, e593.	1.7	2
78	SDF-1/CXCR4 signal is involved in decreased expression ofp57kip2inde novoMDS patients. Hematology, 2012, 17, 220-228.	0.7	1
79	Roles of Aryl-hydrocarbon Receptor in metabolism and proliferative behaviors of Bone Marrow MSCs: Implications for targeted therapy. Current Topics in Medicinal Chemistry, 2021, 21, .	1.0	1
80	Efficacy and Toxicity Of Decitabine Versus CHG Priming Regimen In Patients With Higher Risk Myelodysplastic Syndrome. Blood, 2013, 122, 2789-2789.	0.6	1
81	ATG-010 Plus Low-Dose Dexamethasone (Sd) in Chinese Relapsed/Refractory Multiple Myeloma (RRMM) Patients Previously Received Chimeric Antigen Receptor T-Cell (CAR-T). Blood, 2021, 138, 4778-4778.	0.6	1
82	Abnormal Polarization of T Lymphocyte in Myelodysplastic Syndrome Marrow and Its Negtative Effect on Hematopoiesis Blood, 2006, 108, 4825-4825.	0.6	0
83	Nonhematological Tumor Metastasis in the Bone Marrow: An Analysis of 10112 Unselected Plastic-Embedded Biopsy Sections Blood, 2007, 110, 5154-5154.	0.6	Ο
84	Combined Low-Dose Homoharringtonine, Cytarabine and Granulocyte Colony-Stimulating Factor for Patients with Advanced Myelodysplastic Syndrome (MDS) or Acute Myeloid Leukemia Transformed From MDS. Blood, 2010, 116, 4004-4004.	0.6	0
85	Reduced Response to Stromal Cell-Derived Factor-1(SDF-1) May Lead to Low Expression of p57kip2 in the Bone Marrow of Patients with De Novo Myelodysplastic Syndromes (MDS). Blood, 2011, 118, 2782-2782.	0.6	Ο
86	Low Expression of RPS14 Accompanied with p53-Independent Over-Apoptosis in Myelodysplastic Syndromes Patients with 5q- Aberration. Blood, 2011, 118, 5046-5046.	0.6	0
87	A 15 Mg/M2/d Dose of Decitabine Confers Comparable Responses and Better Tolerance Than the Standard Regimen in MDS patients—results of a Multicenter Prospective Cohort Study. Blood, 2012, 120, 3832-3832.	0.6	Ο
88	Clinical Observation Of Decitabine Treatment In Selected Patients With Lower Risk Myelodysplastic Syndromes. Blood, 2013, 122, 5202-5202.	0.6	0
89	Human Equilibrative Nucleoside Transporter 1 (hENT1) Expression Level Is a Potential Predictive Tool For Response To Decitabine In Patients With Myelodysplastic Syndrome. Blood, 2013, 122, 2790-2790.	0.6	0
90	Protein-Coding and Non-Coding RNA Expression Profiles Of Mesenchymal Stem Cells In Patients With Myelodysplastic Syndromes. Blood, 2013, 122, 1572-1572.	0.6	0

#	Article	IF	CITATIONS
91	Cytogenetic Response Based On Revised IPSS Cytogenetic Risk Stratification and Minimal Residual Disease Monitoringby FISH In MDS Patients Treated By Low-Dose Decitabine. Blood, 2013, 122, 1575-1575.	0.6	0
92	Impaired Osteogenic Differentiation Of Mesenchymal Stem Cells Derived From Bone Marrow Of Patients With Low-Risk Myelodysplastic Syndromes. Blood, 2013, 122, 1579-1579.	0.6	0
93	Identification of microRNA-Regulated Pathways through a Integration of Mcrorna-mRNA Microarray and Bioinformatics Analysis in CD34+ Cells of Myelodysplastic Syndromes. Blood, 2014, 124, 3238-3238.	0.6	0
94	Downregulation of Dicer1 Promotes Cellular Senescence and Decreases the Differentiation and Stem Cell-Supporting Capacities of MSCs in Patients with Myelodysplastic Syndrome. Blood, 2014, 124, 4365-4365.	0.6	0
95	EZH2-Mediated Activation of Serine Biosynthetic Pathway Is Critical for Resistance of Clonal Cells to Stress-Related Apoptosis in Low-Grade Myelodysplastic Syndrome. Blood, 2015, 126, 1660-1660.	0.6	0
96	Labile Plasma Iron (LPI), More Practical and More Sensitive to Iron Overload in Myelodysplastic Syndromes. Blood, 2015, 126, 5230-5230.	0.6	0
97	Ribosomal Protein L23 Negatively Regulates Cell Apoptosis Via Its Suppression of Miz1 and Activation c-Myc in Higher-Risk Myelodysplastic Syndromes. Blood, 2016, 128, 5508-5508.	0.6	0
98	DNMT3Awt NPM1-Mutation Defines a Subgroup of MDS with Special Favorable Outcomes Towards Decitabine Therapy. Blood, 2019, 134, 1724-1724.	0.6	0
99	Phase 2 March Study: ATG-010 Plus Low Dose Dexamethasone in Chinese Relapsed/Refractory Multiple Myeloma (RRMM) Patients Previously Treated with an Immunomodulatory Agent (IMiD) and a Proteasome Inhibitor (PI), Blood, 2021, 138, 4770-4770.	0.6	Ο