Randi Zhang

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/1522842/publications.pdf
Version: 2024-02-01

1	Trifluoromethoxy-substituted nickel catalysts for producing highly branched polyethylenes: impact of solvent, activator and <i> $\mathrm{N}<$ li , <i> $\mathrm{N}<$ lì â ϵ^{2}-ligand on polymer properties. Polymer Chemistry, 2022, 13, 1040-1058.	1.9	16
2	Precipitation Polymerization: A Powerful Tool for Preparation of Uniform Polymer Particles. Polymers, 2022, 14, 1851.	2.0	17
3	Enhancing Ethylene Polymerization of <i>NNN</i>-Cobalt(II) Precatalysts Adorned with a Fluoro-substituent. ACS Omega, 2021, 6, 4448-4460.	1.6	11
4	Thermally resilient cobalt ethylene polymerization catalysts under the joint influence of co-catalyst, gem-dimethyl substitution and ortho-cycloalkyl ring size. Polymer, 2021, 222, 123684.	1.8	9
5	Boosting activity, thermostability, and lifetime of iron ethylene polymerization catalysts through gem â€dimethyl substitution and incorporation of ortho â€cycloalkyl substituents. Applied Organometallic Chemistry, 2021, 35, e6376.	1.7	5
6	Integrating Ringâ€Size Adjustable Cycloalkyl and Benzhydryl Groups as the Steric Protection in Bis(arylimino)trihydroquinolineâ€€obalt Catalysts for Ethylene Polymerization. European Journal of Inorganic Chemistry, 2021, 2021, 3956.	1.0	1
7	Remote dibenzocycloheptyl substitution on a bis(arylimino)pyridyl-iron ethylene polymerization catalyst; enhanced thermal stability and unexpected effects on polymer properties. Polymer Chemistry, 2021, 12, 4214-4225.	1.9	14
8	4,4â€²-Difluorobenzhydryl-modified bis(imino)-pyridyliron(<scp>ii</scp>) chlorides as thermally stable precatalysts for strictly linear polyethylenes with narrow dispersities. Dalton Transactions, 2020, 49, 7384-7396.	1.6	25
9	Sterically and Electronically Modified Aryliminopyridyl-Nickel Bromide Precatalysts for an Access to Branched Polyethylene with Vinyl/Vinylene End Groups. ACS Omega, 2020, 5, 10610-10625.	1.6	18

Steric and electronic modulation of iron catalysts as a route to remarkably high molecular weight linear polyethylenes. Dalton Transactions, 2019, 48, 17488-17498.

Achieving branched polyethylene waxes by aryliminocycloocta[<i>b</i>]pyridylnickel precatalysts:
24 Synthesis, characterization, and ethylene polymerization. Journal of Polymer Science Part A, 2017, 55,

