Pengbo Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522628/publications.pdf

Version: 2024-02-01

59	9,076	44	59
papers	citations	h-index	g-index
61	61	61	11332
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter, 2022, 5, 3417-3431.	5.0	34
2	Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors. ACS Nano, 2021, 15, 7765-7773.	7.3	259
3	Flexible MXeneâ€Based Composites for Wearable Devices. Advanced Functional Materials, 2021, 31, 2009524.	7.8	280
4	Environment Tolerant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Electronics. Advanced Functional Materials, 2021, 31, 2101696.	7.8	179
5	Breathable Ti ₃ C ₂ T _{<i>x</i>} MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. ACS Nano, 2021, 15, 9746-9758.	7.3	198
6	Bioinspired stiff yet tough healable nanocomposites: From molecular design to structural processing. Matter, 2021, 4, 2108-2111.	5.0	3
7	MXene hydrogel for wearable electronics. Matter, 2021, 4, 2655-2658.	5.0	82
8	A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites. Journal of Materials Chemistry C, 2020, 8, 1788-1795.	2.7	91
9	Multiresponsive MXene (Ti ₃ C ₂ T <i>_x</i>)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring. ACS Applied Materials & Decorated Textiles for 2020, 12, 34226-34234.	4.0	106
10	Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy, 2020, 78, 105187.	8.2	140
11	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	11.8	119
12	A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy, 2020, 70, 104560.	8.2	118
13	Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Lowâ€∓emperature Tolerant Strain Sensors. Advanced Functional Materials, 2019, 29, 1904507.	7.8	560
14	Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel. ACS Applied Materials & Emp; Interfaces, 2019, 11, 41701-41709.	4.0	94
15	Flexible 3D Porous MXene Foam for Highâ€Performance Lithiumâ€lon Batteries. Small, 2019, 15, e1904293.	5.2	204
16	Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nano-Micro Letters, 2019, 11, 72.	14.4	276
17	Anisotropic Polyaniline/SWCNT Composite Films Prepared by in Situ Electropolymerization on Highly Oriented Polyethylene for High-Efficiency Ammonia Sensor. ACS Applied Materials & Diterfaces, 2019, 11, 38169-38176.	4.0	30
18	A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Letters, 2019, 19, 1143-1150.	4. 5	538

#	Article	IF	CITATIONS
19	Flexible Breathable Nanomesh Electronic Devices for Onâ€Demand Therapy. Advanced Functional Materials, 2019, 29, 1902127.	7.8	108
20	Polyvinyl Alcohol-Stabilized Liquid Metal Hydrogel for Wearable Transient Epidermal Sensors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47358-47364.	4.0	148
21	Multifunctional cellulose-based hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1541-1562.	2.9	172
22	A Flexible Stretchable Hydrogel Electrolyte for Healable Allâ€inâ€One Configured Supercapacitors. Small, 2018, 14, e1704497.	5.2	230
23	Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30, 3110-3121.	3.2	627
24	A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Fullâ€Range Human–Machine Interfacing. Small, 2018, 14, e1803018.	5.2	156
25	Healable Transparent Electronic Devices. Advanced Functional Materials, 2017, 27, 1606339.	7.8	118
26	Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17865-17871.	4.0	80
27	A flexible transparent colorimetric wrist strap sensor. Nanoscale, 2017, 9, 869-874.	2.8	104
28	Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sensors and Actuators B: Chemical, 2017, 244, 47-53.	4.0	149
29	Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing. Small, 2017, 13, 1701697.	5.2	70
30	Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Musselâ€Inspired Conductive Hybrid Hydrogel Framework. Advanced Functional Materials, 2017, 27, 1703852.	7.8	617
31	Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard―Hybrid Networks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25559-25570.	4.0	437
32	Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO2 Gas Sensor. Sensors, 2017, 17, 2954.	2.1	18
33	Flexible Transparent Electronic Gas Sensors. Small, 2016, 12, 3748-3756.	5.2	234
34	Probing the seeded protocol for high-concentration preparation of silver nanowires. Nano Research, 2016, 9, 1532-1542.	5.8	25
35	Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale, 2016, 8, 12073-12080.	2.8	132
36	Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy, 2016, 30, 831-839.	8.2	183

#	Article	IF	Citations
37	Flexible Room-Temperature Gas Sensors of Nanocomposite Network-Coated Papers. ChemistrySelect, 2016, 1, 2816-2820.	0.7	10
38	Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale, 2016, 8, 13273-13279.	2.8	144
39	High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes. Small, 2016, 12, 2492-2498.	5.2	113
40	Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for Highâ€Performance Gas Sensing. Small, 2015, 11, 5409-5415.	5. 2	225
41	Healable, Transparent, Roomâ€Temperature Electronic Sensors Based on Carbon Nanotube Networkâ€Coated Polyelectrolyte Multilayers. Small, 2015, 11, 5807-5813.	5.2	151
42	Underâ∈Water Superaerophobic Pineâ∈Shaped Pt Nanoarray Electrode for Ultrahighâ∈Performance Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1737-1744.	7.8	397
43	A metallic CoS ₂ nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 6306-6310.	5.2	145
44	Amorphous Co-doped MoS ₂ nanosheet coated metallic CoS ₂ nanocubes as an excellent electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15020-15023.	5. 2	159
45	Transparent Conducting Films of Hierarchically Nanostructured Polyaniline Networks on Flexible Substrates for High-Performance Gas Sensors. Small, 2015, 11, 306-310.	5.2	133
46	Bioelectrocatalysis: Graphene Carrier for Magneto-Controllable Bioelectrocatalysis (Small 4/2014). Small, 2014, 10, 646-646.	5.2	0
47	Stimuliâ€Responsive Supramolecular Interfaces for Controllable Bioelectrocatalysis. ChemElectroChem, 2014, 1, 1602-1612.	1.7	32
48	Graphene Carrier for Magnetoâ€Controllable Bioelectrocatalysis. Small, 2014, 10, 647-652.	5.2	20
49	Highly Crystallized Cubic Cattierite CoS 2 for Electrochemically Hydrogen Evolution over Wide pH Range from 0 to 14. Electrochimica Acta, 2014, 148, 170-174.	2.6	80
50	A 3D Nanoporous Ni-Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1089-1089.	1.7	1
51	Solvothermal synthesis of FeCo nanoparticles for magneto-controllable biocatalysis. RSC Advances, 2014, 4, 11136-11141.	1.7	9
52	A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1138-1144.	1.7	113
53	Highly stable Ag–Au nanoplates and nanoframes for two-photon luminescence. RSC Advances, 2014, 4, 35263.	1.7	14
54	Host–guest chemistry at interface for photoswitchable bioelectrocatalysis. Chemical Communications, 2011, 47, 5994.	2.2	36

#	Article	IF	CITATIONS
55	Combining Hostâ^'Guest Systems with Nonfouling Material for the Fabrication of a Biosurface: Toward Nearly Complete and Reversible Resistance of Cytochrome c. Langmuir, 2010, 26, 12515-12517.	1.6	22
56	Fabrication of Reactivated Biointerface for Dualâ€Controlled Reversible Immobilization of Cytochrome c. Advanced Materials, 2009, 21, 4362-4365.	11.1	64
57	Facile Reversible UV-Controlled and Fast Transition from Emulsion to Gel by Using a Photoresponsive Polymer with a Malachite Green Group. Langmuir, 2009, 25, 10134-10138.	1.6	29
58	Selfâ€Assembled Monolayers of a Malachite Green Derivative: Surfaces with pH―and UVâ€Responsive Wetting Properties. Advanced Materials, 2008, 20, 1972-1977.	11,1	80
59	Tuning surface wettability through photocontrolled reversible molecular shuttle. Chemical Communications, 2008, , 5710.	2.2	172