
Natalia A Ilyushina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pleiotropic Effects of Influenza H1, H3, and B Baloxavir-Resistant Substitutions on Replication, Sensitivity to Baloxavir, and Interferon Expression. Antimicrobial Agents and Chemotherapy, 2022, , e0000922.	3.2	4
2	Adaptation of influenza B virus by serial passage in human airway epithelial cells. Virology, 2020, 549, 68-76.	2.4	2
3	Laninamivir-Interferon Lambda 1 Combination Treatment Promotes Resistance by Influenza A Virus More Rapidly than Laninamivir Alone. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	5
4	Effect of influenza H1N1 neuraminidase V116A and I117V mutations on NA activity and sensitivity to NA inhibitors. Antiviral Research, 2019, 169, 104539.	4.1	11
5	ldentification and quantification of defective virus genomes in high throughput sequencing data using DVG-profiler, a novel post-sequence alignment processing algorithm. PLoS ONE, 2019, 14, e0216944.	2.5	17
6	A comparison of interferon gene expression induced by influenza A virus infection of human airway epithelial cells from two different donors. Virus Research, 2019, 264, 1-7.	2.2	4
7	Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice. Vaccines, 2019, 7, 195.	4.4	8
8	Influenza A virus hemagglutinin mutations associated with use of neuraminidase inhibitors correlate with decreased inhibition by anti-influenza antibodies. Virology Journal, 2019, 16, 149.	3.4	19
9	Rapid one-step biotinylation of biological and non-biological surfaces. Scientific Reports, 2018, 8, 2845.	3.3	18
10	The use of plant lectins to regulate H1N1 influenza A virus receptor binding activity. PLoS ONE, 2018, 13, e0195525.	2.5	12
11	Impact of Influenza A Virus Infection on the Proteomes of Human Bronchoepithelial Cells from Different Donors. Journal of Proteome Research, 2017, 16, 3287-3297.	3.7	21
12	Influenza virus NS1 protein mutations at position 171 impact innate interferon responses by respiratory epithelial cells. Virus Research, 2017, 240, 81-86.	2.2	11
13	Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses. Journal of Virology, 2017, 91, .	3.4	14
14	Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses. PLoS ONE, 2017, 12, e0181999.	2.5	20
15	In vitro modeling of the interaction between human epithelial cells and lymphocytes upon influenza infection. Influenza and Other Respiratory Viruses, 2016, 10, 438-442.	3.4	3
16	Effects of hemagglutinin amino acid substitutions in H9 influenza A virus escape mutants. Archives of Virology, 2016, 161, 3515-3520.	2.1	10
17	Pleiotropic effects of amino acid substitutions in H5 hemagglutinin of influenza A escape mutants. Virus Research, 2015, 210, 81-89.	2.2	19
18	In vitro anti-influenza A activity of interferon (IFN)-λ1 combined with IFN-β or oseltamivir carboxylate. Antiviral Research, 2014, 111, 112-120.	4.1	21

NATALIA A ILYUSHINA

#	Article	IF	CITATIONS
19	Labeling of influenza viruses with synthetic fluorescent and biotin-labeled lipids. Virologica Sinica, 2014, 29, 199-210.	3.0	9
20	Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants. Virology, 2013, 447, 233-239.	2.4	24
21	Decreased Neuraminidase Activity Is Important for the Adaptation of H5N1 Influenza Virus to Human Airway Epithelium. Journal of Virology, 2012, 86, 4724-4733.	3.4	43
22	Comparative Study of Influenza Virus Replication in MDCK Cells and in Primary Cells Derived from Adenoids and Airway Epithelium. Journal of Virology, 2012, 86, 11725-11734.	3.4	56
23	Adaptation of Pandemic H1N1 Influenza Viruses in Mice. Journal of Virology, 2010, 84, 8607-8616.	3.4	189
24	Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets. PLoS Pathogens, 2010, 6, e1000933.	4.7	76
25	Extensive Mammalian Ancestry of Pandemic (H1N1) 2009 Virus. Emerging Infectious Diseases, 2010, 16, 314-317.	4.3	14
26	Human-Like Receptor Specificity Does Not Affect the Neuraminidase-Inhibitor Susceptibility of H5N1 Influenza Viruses. PLoS Pathogens, 2008, 4, e1000043.	4.7	42
27	Oseltamivir-Ribavirin Combination Therapy for Highly Pathogenic H5N1 Influenza Virus Infection in Mice. Antimicrobial Agents and Chemotherapy, 2008, 52, 3889-3897.	3.2	114
28	Amantadine-oseltamivir combination therapy for H5N1 influenza virus infection in mice. Antiviral Therapy, 2007, 12, 363-70.	1.0	61
29	Amantadine-Oseltamivir Combination therapy for H5N1 Influenza Virus Infection in Mice. Antiviral Therapy, 2007, 12, 363-370.	1.0	121
30	Combination chemotherapy, a potential strategy for reducing the emergence of drug-resistant influenza A variants. Antiviral Research, 2006, 70, 121-131.	4.1	154
31	The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. Journal of Experimental Medicine, 2006, 203, 689-697.	8.5	316
32	Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology, 2005, 341, 102-106.	2.4	107
33	Restoration of virulence of escape mutants of H5 and H9 influenza viruses by their readaptation to mice. Journal of General Virology, 2005, 86, 2831-2838.	2.9	22
34	Monoclonal antibodies differentially affect the interaction between the hemagglutinin of H9 influenza virus escape mutants and sialic receptors. Virology, 2004, 329, 33-39.	2.4	17
35	Structural Differences among Hemagglutinins of Influenza A Virus Subtypes Are Reflected in Their Antigenic Architecture: Analysis of H9 Escape Mutants. Journal of Virology, 2004, 78, 240-249.	3.4	127
36	Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. Journal of General Virology, 2002, 83, 2497-2505.	2.9	174