
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial risk assessment of radiocesium contamination of edible mushrooms – Lessons from a highly frequented recreational area. Science of the Total Environment, 2022, 807, 150861.	3.9	5
2	Traits and phylogenies modulate the environmental responses of woodâ€inhabiting fungal communities across spatial scales. Journal of Ecology, 2022, 110, 784-798.	1.9	5
3	Fungal fruit body assemblages are tougher in harsh microclimates. Scientific Reports, 2022, 12, 1633.	1.6	5
4	A replicated study on the response of spider assemblages to regional and local processes. Ecological Monographs, 2022, 92, .	2.4	6
5	Disentangling the importance of space and host tree for the beta-diversity of beetles, fungi, and bacteria: Lessons from a large dead-wood experiment. Biological Conservation, 2022, 268, 109521.	1.9	5
6	Snags, logs, stumps, and microclimate as tools optimizing deadwood enrichment for forest biodiversity. Biological Conservation, 2022, 270, 109569.	1.9	11
7	Coverage based diversity estimates of facultative saproxylic species highlight the importance of deadwood for biodiversity. Forest Ecology and Management, 2022, 517, 120275.	1.4	16
8	Windthrow and salvage logging alter β-diversity of multiple species groups in a mountain spruce forest. Forest Ecology and Management, 2022, 520, 120401.	1.4	4
9	Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multiâ€scale approach. Diversity and Distributions, 2021, 27, 439-453.	1.9	8
10	Palynomorphs in Baltic, Bitterfeld and Ukrainian ambers: a comparison. Palynology, 2021, 45, 441-457.	0.7	5
11	Functional Traits of Stipitate Basidiomycetes. , 2021, , 361-377.		0
12	Global analysis reveals an environmentally driven latitudinal pattern in mushroom size across fungal species. Ecology Letters, 2021, 24, 658-667.	3.0	11
13	Ecology versus society: Impacts of bark beetle infestations on biodiversity and restorativeness in protected areas of Central Europe. Biological Conservation, 2021, 254, 108931.	1.9	26
14	Amplicon Sequencing-Based Bipartite Network Analysis Confirms a High Degree of Specialization and Modularity for Fungi and Prokaryotes in Deadwood. MSphere, 2021, 6, .	1.3	10
15	Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography, 2021, 44, 1169-1179.	2.1	11
16	What can intraspecific trait variability tell us about fungal communities and adaptations?. Mycological Progress, 2021, 20, 905-910.	0.5	4
17	Transcriptional response of mushrooms to artificial sun exposure. Ecology and Evolution, 2021, 11, 10538-10546.	0.8	8
18	First Evidence That Nematode Communities in Deadwood Are Related to Tree Species Identity and to Co-Occurring Fungi and Prokaryotes. Microorganisms, 2021, 9, 1454.	1.6	8

#	Article	IF	CITATIONS
19	The critical role of tree species and human disturbance in determining the macrofungal diversity in Europe. Global Ecology and Biogeography, 2021, 30, 2084-2100.	2.7	9
20	Forest disturbance and salvage logging have neutral long-term effects on drinking water quality but alter biodiversity. Forest Ecology and Management, 2021, 495, 119354.	1.4	8
21	Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology, 2020, 101, e02949.	1.5	26
22	Estimating retention benchmarks for salvage logging to protect biodiversity. Nature Communications, 2020, 11, 4762.	5.8	54
23	No bull: dung-dwelling mushrooms show reproductive trait syndromes different from their non-coprophilous allies. Mycological Progress, 2020, 19, 817-824.	0.5	7
24	Restorationâ€oriented forest management affects community assembly patterns of deadwoodâ€dependent organisms. Journal of Applied Ecology, 2020, 57, 2429-2440.	1.9	17
25	Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 2020, 129, 1579-1588.	1.2	63
26	Bark Beetle Population Dynamics in the Anthropocene: Challenges and Solutions. Trends in Ecology and Evolution, 2019, 34, 914-924.	4.2	159
27	European mushroom assemblages are darker in cold climates. Nature Communications, 2019, 10, 2890.	5.8	34
28	Radar vision in the mapping of forest biodiversity from space. Nature Communications, 2019, 10, 4757.	5.8	66
29	Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191744.	1.2	22
30	Deadwood retention in forests lowers short-term browsing pressure on silver fir saplings by overabundant deer. Forest Ecology and Management, 2019, 451, 117531.	1.4	27
31	Effects of macroclimate and resource on the diversity of tropical wood-inhabiting fungi. Forest Ecology and Management, 2019, 436, 79-87.	1.4	16
32	Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus!. Fungal Ecology, 2019, 39, 100-108.	0.7	41
33	Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Diversity and Distributions, 2019, 25, 783-796.	1.9	18
34	Openâ€source data reveal how collectionsâ€based fungal diversity is sensitive to global change. Applications in Plant Sciences, 2019, 7, e01227.	0.8	28
35	A test of camera surveys to study fungus-animal interactions. Mycoscience, 2019, 60, 287-292.	0.3	3
36	Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. Journal of Biogeography, 2019, 46, 1054-1065.	1.4	18

#	Article	IF	CITATIONS
37	Molecular fungal community and its decomposition activity in sapwood and heartwood of 13 temperate European tree species. PLoS ONE, 2019, 14, e0212120.	1.1	55
38	Decadal effects of landscapeâ€wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity. Diversity and Distributions, 2019, 25, 430-441.	1.9	23
39	Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Functional Ecology, 2019, 33, 372-387.	1.7	39
40	Increasing disturbance demands new policies to conserve intact forest. Conservation Letters, 2019, 12, e12449.	2.8	81
41	Explaining European fungal fruiting phenology with climate variability. Ecology, 2018, 99, 1306-1315.	1.5	29
42	Do plantâ€based biogeographical regions shape aphyllophoroid fungal communities in Europe?. Journal of Biogeography, 2018, 45, 1182-1195.	1.4	15
43	Independent effects of host and environment on the diversity of woodâ€inhabiting fungi. Journal of Ecology, 2018, 106, 1428-1442.	1.9	74
44	Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. Forest Ecology and Management, 2018, 409, 564-570.	1.4	41
45	Fungal spore diversity reflects substrate-specific deposition challenges. Scientific Reports, 2018, 8, 5356.	1.6	47
46	Impacts of salvage logging on biodiversity: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 279-289.	1.9	252
47	Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evolutionary Biology, 2018, 18, 119.	3.2	104
48	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
49	Influence of macroclimate and local conservation measures on taxonomic, functional, and phylogenetic diversities of saproxylic beetles and wood-inhabiting fungi. Biodiversity and Conservation, 2018, 27, 3119-3135.	1.2	27
50	Biodiversity along temperate forest succession. Journal of Applied Ecology, 2018, 55, 2756-2766.	1.9	175
51	Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environmental Microbiology, 2018, 20, 3744-3756.	1.8	44
52	Continentalâ€scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography, 2018, 45, 1942-1953.	1.4	35
53	Effects of natural disturbances and salvage logging on biodiversity – Lessons from the Bohemian Forest. Forest Ecology and Management, 2017, 388, 113-119.	1.4	85
54	Do differences in herbivore resistance contribute to elevational niches of species and hybrids in the central European Senecio nemorensis (Compositae, Senecioneae) syngameon?. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 24, 61-71.	1.1	2

#	Article	IF	CITATIONS
55	Big data integration: Pan-European fungal species observations' assembly for addressing contemporary questions in ecology and global change biology. Fungal Biology Reviews, 2017, 31, 88-98.	1.9	45
56	Mean spore size and shape in ectomycorrhizal and saprotrophic assemblages show strong responses under resource constraints. Fungal Ecology, 2017, 26, 59-64.	0.7	17
57	Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. Forest Ecology and Management, 2017, 391, 86-95.	1.4	151
58	The Red-belted Bracket (Fomitopsis pinicola) colonizes spruce trees early after bark beetle attack and persists. Fungal Ecology, 2017, 27, 182-188.	0.7	24
59	Small-scale positive response of terrestrial gastropods to dead-wood addition is mediated by canopy openness. Forest Ecology and Management, 2017, 396, 85-90.	1.4	8
60	On the structural and species diversity effects of bark beetle disturbance in forests during initial and advanced early-seral stages at different scales. European Journal of Forest Research, 2017, 136, 357-373.	1.1	6
61	Lost in the hybridisation vortex: high-elevation Senecio hercynicus (Compositae, Senecioneae) is genetically swamped by its congener S. ovatus in the Bavarian Forest National Park (SE Germany). Evolutionary Ecology, 2017, 31, 401-420.	0.5	9
62	An experimental test of the habitatâ€amount hypothesis for saproxylic beetles in a forested region. Ecology, 2017, 98, 1613-1622.	1.5	75
63	Ellenberg indicator values for macromycetes – a methodological approach and first applications. Fungal Ecology, 2017, 27, 202-212.	0.7	11
64	Understanding the distribution of wood-inhabiting fungi in European beech reserves from species-specific habitat models. Fungal Ecology, 2017, 27, 168-174.	0.7	49
65	Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography, 2016, 39, 689-698.	2.1	93
66	Shortâ€distance attraction of saproxylic Heteroptera to olfactory cues. Insect Conservation and Diversity, 2016, 9, 254-257.	1.4	5
67	Small beetle, largeâ€scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology, 2016, 53, 530-540.	1.9	161
68	Changes in the dominant assembly mechanism drive species loss caused by declining resources. Ecology Letters, 2016, 19, 163-170.	3.0	60
69	Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biological Conservation, 2016, 204, 181-188.	1.9	61
70	Climate impacts on fungal community and trait dynamics. Fungal Ecology, 2016, 22, 17-25.	0.7	44
71	Mean reproductive traits of fungal assemblages are correlated with resource availability. Ecology and Evolution, 2016, 6, 582-592.	0.8	17
72	Mapping a â€~cryptic kingdom': Performance of lidar derived environmental variables in modelling the occurrence of forest fungi. Remote Sensing of Environment, 2016, 186, 428-438.	4.6	27

#	Article	lF	CITATIONS
73	Disentangling the effects of forest-stand type and dead-wood origin of the early successional stage on the diversity of wood-inhabiting fungi. Forest Ecology and Management, 2016, 377, 161-169.	1.4	41
74	Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. Journal of Applied Ecology, 2016, 53, 934-943.	1.9	194
75	Tales and mysteries of fungal fruiting: How morphological and physiological traits affect aÂpileate lifestyle. Fungal Biology Reviews, 2016, 30, 36-61.	1.9	51
76	Patterns of laccase and peroxidases in coarse woody debris of Fagus sylvatica, Picea abies and Pinus sylvestris and their relation to different wood parameters. European Journal of Forest Research, 2016, 135, 109-124.	1.1	24
77	Bark-scratching of storm-felled trees preserves biodiversity at lower economic costs compared to debarking. Forest Ecology and Management, 2016, 364, 10-16.	1.4	36
78	Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecological Indicators, 2016, 65, 149-160.	2.6	48
79	Response of bird assemblages to windstorm and salvage logging — Insights from analyses of functional guild and indicator species. Ecological Indicators, 2016, 65, 142-148.	2.6	36
80	Bark Beetles Increase Biodiversity While Maintaining Drinking Water Quality. Conservation Letters, 2015, 8, 272-281.	2.8	140
81	Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. Journal of Hydrology and Hydromechanics, 2015, 63, 342-352.	0.7	24
82	Can divergent selection save the rare Senecio hercynicus from genetic swamping by its spreading congener S. ovatus (Compositae, Senecioneae)?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 210, 47-59.	0.6	5
83	Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biological Conservation, 2015, 191, 139-149.	1.9	218
84	Small differences in seasonal and thermal niches influence elevational limits of native and invasive Balsams. Biological Conservation, 2015, 191, 682-691.	1.9	12
85	Host abundance, durability, basidiome form and phylogenetic isolation determine fungivore species richness. Biological Journal of the Linnean Society, 2015, 114, 699-708.	0.7	20
86	Implications of reserve size and forest connectivity for the conservation of wood-inhabiting fungi in Europe. Biological Conservation, 2015, 191, 469-477.	1.9	47
87	Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles. Fungal Ecology, 2015, 17, 197-204.	0.7	53
88	Guild-specific responses of forest Lepidoptera highlight conservation-oriented forest management – Implications from conifer-dominated forests. Forest Ecology and Management, 2015, 337, 41-47.	1.4	34
89	Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecology, 2015, 17, 205-212.	0.7	51
90	New Insights into the Consequences of Post-Windthrow Salvage Logging Revealed by Functional Structure of Saproxylic Beetles Assemblages. PLoS ONE, 2014, 9, e101757.	1.1	62

#	Article	IF	CITATIONS
91	Identification of FactorsInfluencing the Puumala Virus Seroprevalence within Its Reservoir in aMontane Forest Environment. Viruses, 2014, 6, 3944-3967.	1.5	5
92	Nearâ€ŧoâ€nature logging influences fungal community assembly processes in a temperate forest. Journal of Applied Ecology, 2014, 51, 939-948.	1.9	80
93	Relative heart size in two rodent species increases with elevation: reviving Hesse's rule. Journal of Biogeography, 2014, 41, 2211-2220.	1.4	14
94	Changes in the community composition and trophic structure of microarthropods in sporocarps of the wood decaying fungus Fomitopsis pinicola along an altitudinal gradient. Applied Soil Ecology, 2014, 84, 16-23.	2.1	16
95	Wood resource and not fungi attract earlyâ€successional saproxylic species of <i>Heteroptera –</i> an experimental approach. Insect Conservation and Diversity, 2014, 7, 533-542.	1.4	24
96	Forest vegetation structure has more influence on predation risk of artificial ground nests than human activities. Basic and Applied Ecology, 2013, 14, 687-693.	1.2	32
97	Conservation value of forests attacked by bark beetles: Highest number of indicator species is found in early successional stages. Journal for Nature Conservation, 2013, 21, 97-104.	0.8	106
98	Insects Overshoot the Expected Upslope Shift Caused by Climate Warming. PLoS ONE, 2013, 8, e65842.	1.1	43
99	Aggregative response in bats: prey abundance versus habitat. Oecologia, 2012, 169, 673-684.	0.9	131
100	Diversity of wood-decaying fungi under different disturbance regimes—a case study from spruce mountain forests. Biodiversity and Conservation, 2012, 21, 33-49.	1.2	46
101	LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodiversity and Conservation, 2011, 20, 465-481.	1.2	36
102	Detection of Climate-Sensitive Zones and Identification of Climate Change Indicators: A Case Study from the Bavarian Forest National Park. Folia Geobotanica, 2010, 45, 163-182.	0.4	45
103	Effects of resource availability and climate on the diversity of woodâ€decaying fungi. Journal of Ecology, 2010, 98, 822-832.	1.9	114
104	Arthropod species richness in the Norway Spruce (Picea abies (L.) Karst.) canopy along an elevation gradient. Forest Ecology and Management, 2010, 259, 1513-1521.	1.4	36
105	Drivers of bryophyte diversity allow implications for forest management with a focus on climate change. Forest Ecology and Management, 2010, 260, 1956-1964.	1.4	60
106	Importance of natural disturbance for recovery of the rare polypore Antrodiella citrinella Niemelä & Ryvarden. Fungal Biology, 2010, 114, 129-133.	1.1	42
107	Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecological Indicators, 2010, 10, 341-352.	2.6	61
108	Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic and Applied Ecology, 2009, 10, 671-681.	1.2	61

#	Article	IF	CITATIONS
109	Lichen diversity in temperate montane forests is influenced by forest structure more than climate. Forest Ecology and Management, 2009, 258, 745-751.	1.4	90
110	Molluscs and Climate Warming in a Low Mountain Range National Park. Malacologia, 2009, 51, 89-109.	0.2	26