
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1521960/publications.pdf Version: 2024-02-01

LE CUI

#	Article	IF	CITATIONS
1	Viromes in marine ecosystems reveal remarkable invertebrate RNA virus diversity. Science China Life Sciences, 2022, 65, 426-437.	2.3	22
2	Human endogenous retroviruses in viral disease and therapy. Clinical and Translational Discovery, 2022, 2, .	0.2	2
3	Evolution and Genetic Diversity of the Retroviral Envelope in Anamniotes. Journal of Virology, 2022, 96, e0207221.	1.5	4
4	Origin and Deep Evolution of Human Endogenous Retroviruses in Pan-Primates. Viruses, 2022, 14, 1370.	1.5	9
5	Genetic Variation of Multiple Serotypes of Enteroviruses Associated with Hand, Foot and Mouth Disease in Southern China. Virologica Sinica, 2021, 36, 61-74.	1.2	11
6	Wildlife conservation and management in China: achievements, challenges and perspectives. National Science Review, 2021, 8, nwab042.	4.6	26
7	Human Endogenous Retroviruses as Biomedicine Markers. Virologica Sinica, 2021, 36, 852-858.	1.2	8
8	Multiple Infiltration and Cross-Species Transmission of Foamy Viruses across the Paleozoic to the Cenozoic Era. Journal of Virology, 2021, 95, e0048421.	1.5	7
9	Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection inÂvivo. Immunity, 2021, 54, 2231-2244.e6.	6.6	23
10	Comparative study of the Malacostraca viromes between deep sea and shallow water. Science Bulletin, 2021, 66, 2458-2461.	4.3	3
11	Genetically Divergent Highly Pathogenic Avian Influenza A(H5N8) Viruses in Wild Birds, Eastern China. Emerging Infectious Diseases, 2021, 27, 2940-2943.	2.0	12
12	Different formins restrict localization of distinct tropomyosins on dorsal stress fibers in osteosarcoma cells. Cytoskeleton, 2020, 77, 16-24.	1.0	5
13	A PILOT CLINICAL TRIAL OUTCOME OF BIOSAFETY SYSTEM EVALUATION FOR PERV-C FREE PORCINE ISLET XENOTRANSPLANTATION BASED ON PRINCIPLE OF WHO "CHANGSHA COMMUNIQUE― Transplantation, 2020, 104, S9-S9.	0.5	0
14	A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discovery, 2020, 6, 93.	3.1	23
15	Ancient origin and complex evolution of porcine endogenous retroviruses. Biosafety and Health, 2020, 2, 142-151.	1.2	7
16	Distinct Cell Transcriptomic Landscapes Upon Henipavirus Infections. Frontiers in Microbiology, 2020, 11, 986.	1.5	2
17	On the origin and continuing evolution of SARS-CoV-2. National Science Review, 2020, 7, 1012-1023.	4.6	1,248
18	Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Science Advances, 2020, 6, eaax7989.	4.7	60

#	Article	IF	CITATIONS
19	Bat origin of a new human coronavirus: there and back again. Science China Life Sciences, 2020, 63, 461-462.	2.3	91
20	GsmPlot: a web server to visualize epigenome data in NCBI. BMC Bioinformatics, 2020, 21, 55.	1.2	2
21	Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China. National Science Review, 2020, 7, 239-242.	4.6	50
22	Co-circulation of multiple reassortant H6 subtype avian influenza viruses in wild birds in eastern China, 2016–2017. Virology Journal, 2020, 17, 62.	1.4	8
23	High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress and Chaperones, 2019, 24, 835-849.	1.2	35
24	A reptilian endogenous foamy virus sheds light on the early evolution of retroviruses. Virus Evolution, 2019, 5, vez001.	2.2	19
25	Geographical structure of bat SARS-related coronaviruses. Infection, Genetics and Evolution, 2019, 69, 224-229.	1.0	37
26	Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Research, 2019, 29, 265-273.	5.7	115
27	Discovery of endogenous retroviruses with mammalian envelopes in avian genomes uncovers long-term bird-mammal interaction. Virology, 2019, 530, 27-31.	1.1	6
28	Identification and evolution of avian endogenous foamy viruses. Virus Evolution, 2019, 5, vez049.	2.2	10
29	Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 2019, 17, 181-192.	13.6	3,993
30	Dampened STING-Dependent Interferon Activation in Bats. Cell Host and Microbe, 2018, 23, 297-301.e4.	5.1	206
31	Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity. Molecular Biology and Evolution, 2018, 35, 1626-1637.	3.5	59
32	Sudden emergence of human infections with H7N9 avian influenza A virus in Hubei province, central China. Scientific Reports, 2018, 8, 2486.	1.6	4
33	Genetic Analysis of Reemerging GII.P16-GII.2 Noroviruses in 2016–2017 in China. Journal of Infectious Diseases, 2018, 218, 133-143.	1.9	43
34	Serologic and viral genome prevalence of HSV, EBV, and HCMV among healthy adults in Wuhan, China. Journal of Medical Virology, 2018, 90, 571-581.	2.5	15
35	Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor. Journal of Virology, 2018, 92, .	1.5	99
36	Why were so few people infected with H7N9 influenza A viruses in China from late 2017 to 2018?. Science China Life Sciences, 2018, 61, 1442-1444.	2.3	10

#	Article	IF	CITATIONS
37	Phylogenomic analysis unravels evolution of yellow fever virus within hosts. PLoS Neglected Tropical Diseases, 2018, 12, e0006738.	1.3	24
38	M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. Journal of Virology, 2017, 91, .	1.5	41
39	Genetic properties and pathogenicity of a novel reassortant H10N5 influenza virus from wild birds. Archives of Virology, 2017, 162, 1349-1353.	0.9	4
40	Molecular Evolution and Emergence of H5N6 Avian Influenza Virus in Central China. Journal of Virology, 2017, 91, .	1.5	23
41	Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends in Microbiology, 2017, 25, 713-728.	3.5	199
42	Bayesian evolutionary analysis for emerging infectious disease: an exemplified application for H7N9 avian influenza viruses. Science China Life Sciences, 2017, 60, 1392-1395.	2.3	6
43	Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer. Frontiers in Microbiology, 2017, 8, 1720.	1.5	44
44	Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathogens, 2017, 13, e1006698.	2.1	797
45	Analysis of Dengue Serotype 4 in Sri Lanka during the 2012–2013 Dengue Epidemic. American Journal of Tropical Medicine and Hygiene, 2017, 97, 130-136.	0.6	12
46	Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Scientific Reports, 2016, 6, 21722.	1.6	113
47	Evolution and comparative analysis of the bat MHC-I region. Scientific Reports, 2016, 6, 21256.	1.6	56
48	Co-circulation of H5N6, H3N2, H3N8 and Emergence of Novel Reassortant H3N6 in a Local Community in Hunan Province in China. Scientific Reports, 2016, 6, 25549.	1.6	21
49	Contraction of the type I IFN locus and unusual constitutive expression of <i>IFN-α</i> in bats. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2696-2701.	3.3	272
50	Bats and Rodents Shape Mammalian Retroviral Phylogeny. Scientific Reports, 2015, 5, 16561.	1.6	31
51	Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses, 2015, 7, 5792-5800.	1.5	10
52	Endogenization of mouse mammary tumor virus (MMTV)-like elements in genomes of pikas (Ochotona) Tj ETQq(0 0 0 rgBT	/Oyerlock 10

53	Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biology, 2014, 15, 539.	3.8	60
54	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895

#	Article	IF	CITATIONS
55	An Allometric Relationship between the Genome Length and Virion Volume of Viruses. Journal of Virology, 2014, 88, 6403-6410.	1.5	62
56	Identification of diverse full-length endogenous betaretroviruses in megabats and microbats. Retrovirology, 2013, 10, 35.	0.9	45
57	Ancient invasion of an extinct gammaretrovirus in cetaceans. Virology, 2013, 441, 66-69.	1.1	5
58	Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus. Virology Journal, 2013, 10, 304.	1.4	47
59	Adaptation of Phenylalanine and Tyrosine Catabolic Pathway to Hibernation in Bats. PLoS ONE, 2013, 8, e62039.	1.1	23
60	Endogenous Hepadnaviruses in the Genome of the Budgerigar (Melopsittacus undulatus) and the Evolution of Avian Hepadnaviruses. Journal of Virology, 2012, 86, 7688-7691.	1.5	25
61	Evidence for an endogenous papillomavirus-like element in the platypus genome. Journal of General Virology, 2012, 93, 1362-1366.	1.3	5
62	Endogenous Lentiviruses in the Ferret Genome. Journal of Virology, 2012, 86, 3383-3385.	1.5	38
63	Discovery of Retroviral Homologs in Bats: Implications for the Origin of Mammalian Gammaretroviruses. Journal of Virology, 2012, 86, 4288-4293.	1.5	52
64	Identification of diverse groups of endogenous gammaretroviruses in mega- and microbats. Journal of General Virology, 2012, 93, 2037-2045.	1.3	48
65	Co-Circulation and Persistence of Genetically Distinct Saffold Viruses, Denmark. Emerging Infectious Diseases, 2012, 18, 1694-1696.	2.0	6
66	Endogenous RNA viruses of plants in insect genomes. Virology, 2012, 427, 77-79.	1.1	47
67	Progressive Pseudogenization: Vitamin C Synthesis and Its Loss in Bats. Molecular Biology and Evolution, 2011, 28, 1025-1031.	3.5	36
68	Recent Loss of Vitamin C Biosynthesis Ability in Bats. PLoS ONE, 2011, 6, e27114.	1.1	25
69	Positive Selection of the Bat Interferon Alpha Gene Family. Biochemical Genetics, 2010, 48, 840-846.	0.8	15
70	Accelerated evolution of PRRSV during recent outbreaks in China. Virus Genes, 2010, 41, 241-245.	0.7	32
71	Detection of Japanese Encephalitis Virus Antibodies in Bats in Southern China. American Journal of Tropical Medicine and Hygiene, 2008, 78, 1007-1011.	0.6	37
72	Detection of Japanese encephalitis virus antibodies in bats in Southern China. American Journal of Tropical Medicine and Hygiene, 2008, 78, 1007-11.	0.6	22

lue.	Cuu
JIE	Cui

#	Article	IF	CITATIONS
73	Evolutionary Relationships between Bat Coronaviruses and Their Hosts. Emerging Infectious Diseases, 2007, 13, 1526-1532.	2.0	123