Kyung-Koo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1521781/publications.pdf

Version: 2024-02-01

361413 361022 1,286 41 20 35 citations h-index g-index papers 43 43 43 1516 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel Phenothiazineâ∈Based Selfâ∈Assembled Monolayer as a Hole Selective Contact for Highly Efficient and Stable pâ∈iâ∈n Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	77
2	Practical Highâ€Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte. Small, 2022, 18, e2107492.	10.0	73
3	Enhanced performances of lithium metal batteries by synergistic effect of low concentration bisalt electrolyte. Journal of Materials Chemistry A, 2022, 10, 12035-12046.	10.3	16
4	Activated carbons effectively purified by post-heat treatment under vacuum conditions. Carbon Letters, 2021, 31, 973-984.	5.9	4
5	Synergistic Effects on Lithium Metal Batteries by Preferential Ionic Interactions in Concentrated Bisalt Electrolytes. Advanced Energy Materials, 2021, 11, 2003520.	19.5	33
6	Operando Raman and UV-Vis spectroscopic investigation of the coloring and bleaching mechanism of self-powered photochromic devices for smart windows. Nano Energy, 2021, 82, 105721.	16.0	34
7	Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. Small, 2021, 17, e2100133.	10.0	59
8	Rational design of the electrolyte systems for the photochromic device. Electrochimica Acta, 2021, 374, 137964.	5.2	4
9	Efficient parameterization of intermolecular force fields for molecular dynamics simulations via genetic algorithms. Journal of Molecular Liquids, 2021, 337, 116579.	4.9	6
10	Solvation Structure around Li ⁺ lons in Organic Carbonate Electrolytes: Spacer-Free Thin Cell IR Spectroscopy. Analytical Chemistry, 2021, 93, 12594-12601.	6.5	13
11	Novel flexible photochromic device with unprecedented fast-bleaching kinetic via platinum decoration on WO3 layer. Solar Energy Materials and Solar Cells, 2021, 231, 111316.	6.2	11
12	Quantum mechanical/molecular mechanical approach for the simulation of UV–Vis absorption spectra of π-conjugated oligomers. Journal of Molecular Liquids, 2021, 341, 117406.	4.9	1
13	High-voltage and intrinsically safe supercapacitors based on a trimethyl phosphate electrolyte. Journal of Materials Chemistry A, 2021, 9, 20725-20736.	10.3	26
14	Design of a LiFâ€Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI–THF Electrolyte for Stable Lithium Metal Batteries. Small, 2021, 17, e2103375.	10.0	42
15	Recyclable anhydride catalyst for H $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 2 $<$ /sub $>$ 0 oxidation: $<$ i $>$ N $<$ /i $>$ -0xidation of pyridine derivatives. RSC Advances, 2020, 10, 9165-9171.	3.6	3
16	Propionitrile as a single organic solvent for high voltage electric double-layer capacitors. Journal of Power Sources, 2020, 463, 228134.	7.8	15
17	Bis(oxalate)borate-containing electrolytes for high voltage electric double-layer capacitors: A comparative study. Electrochimica Acta, 2019, 321, 134649.	5.2	19
18	Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation Studies of Nonaqueous Lithium Ion Battery Electrolytes. Journal of Physical Chemistry B, 2019, 123, 6651-6663.	2.6	37

#	Article	IF	Citations
19	Regio-regular alternating diketopyrrolopyrrole-based D ₁ â€"Aâ€"D ₂ â€"A terpolymers for the enhanced performance of polymer solar cells. RSC Advances, 2019, 9, 42096-42109.	3.6	3
20	1,1-Dimethylpyrrolidinium tetrafluoroborate as novel salt for high-voltage electric double-layer capacitors. Electrochimica Acta, 2019, 299, 98-106.	5.2	32
21	Hindered C N bond rotation in triazinyl dithiocarbamates. Journal of Molecular Structure, 2018, 1152, 215-222.	3.6	2
22	Difluorobenzothiadiazole and Selenophene-Based Conjugated Polymer Demonstrating an Effective Hole Mobility Exceeding 5 cm $<$ sup $>$ 2 $<$ /sup $>$ V $<$ sup $>$ â \in "1 $<$ /sup $>$ s $<$ sup $>$ â \in "1 $<$ /sup $>$ with Solid-State Electrolyte Dielectric. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32492-32500.	8.0	22
23	Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery. Nature Communications, 2017, 8, 14658.	12.8	68
24	Highly Sensitive Flexible NH ₃ Sensors Based on Printed Organic Transistors with Fluorinated Conjugated Polymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7322-7330.	8.0	59
25	A Nonchlorinated Solvent-Processable Fluorinated Planar Conjugated Polymer for Flexible Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28817-28827.	8.0	20
26	Structure–Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors. ACS Applied Materials & Effect Transistors. ACS Applied Materials & Effet Transistors. AC	8.0	31
27	Synthesis, characterization, and electrochemical performance of V-doped Li 2 MnSiO 4 /C composites for Li-ion battery. Materials Letters, 2016, 164, 270-273.	2.6	21
28	Density Functional Investigation of Graphene Doped with Amine-Based Organic Molecules. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	7
29	Physical and electrochemical characteristics of carbon content in carbon-coated Li2MnSiO4 for rechargeable lithium batteries. Journal of Applied Electrochemistry, 2015, 45, 169-176.	2.9	6
30	Fast ultrasound-assisted synthesis of Li2MnSiO4 nanoparticles for a lithium-ion battery. Journal of Power Sources, 2015, 294, 522-529.	7.8	18
31	Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Physical Chemistry Chemical Physics, 2012, 14, 4857.	2.8	158
32	Infrared Probing of 4-Azidoproline Conformations Modulated by Azido Configurations. Journal of Physical Chemistry B, 2012, 116, 5097-5110.	2.6	20
33	A comprehensive library of blocked dipeptides reveals intrinsic backbone conformational propensities of unfolded proteins. Proteins: Structure, Function and Bioinformatics, 2012, 80, 977-990.	2.6	30
34	Ultrafast internal rotational dynamics of the azido group in (4S)-azidoproline: Chemical exchange 2DIR spectroscopic investigations. Chemical Physics, 2012, 396, 23-29.	1.9	21
35	Polarization-Angle-Scanning 2DIR Spectroscopy of Coupled Anharmonic Oscillators: A Polarization Null Angle Method. Journal of Physical Chemistry B, 2011, 115, 5456-5464.	2.6	13
36	Ultrafast Vibrational Spectroscopy of Cyanophenols. Journal of Physical Chemistry A, 2010, 114, 2757-2767.	2.5	19

KYUNG-KOO LEE

#	Article	IF	CITATIONS
37	Femtosecond characterization of vibrational optical activity of chiral molecules. Nature, 2009, 458, 310-313.	27.8	168
38	Site-selective Intramolecular Hydrogen-Bonding Interactions in Phosphorylated Serine and Threonine Dipeptides. Journal of Physical Chemistry B, 2008, 112, 16782-16787.	2.6	16
39	Dipeptide Structure Determination by Vibrational Circular Dichroism Combined with Quantum Chemistry Calculations. ChemPhysChem, 2007, 8, 2218-2226.	2.1	19
40	Structure ofN-Acetylproline Amide in Liquid Water: Experimentally Measured and Numerically Simulated Infrared and Vibrational Circular Dichroism Spectraâ€. Journal of Physical Chemistry B, 2006, 110, 18834-18843.	2.6	38
41	Site-Specific Hydrogen-Bonding Interaction between N-Acetylproline Amide and Protic Solvent Molecules:  Comparisons of IR and VCD Measurements with MD Simulations. Journal of Physical Chemistry A, 2006, 110, 13355-13365.	2.5	20