
DanutÄ– VaiÄiukynienÄ–

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1521698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Influence of Expanded Glass and Expanded Clay on Lightweight Aggregate Shotcrete Properties. Materials, 2022, 15, 1674.	2.9	2
2	The improvement of the thermal and acoustic insulation properties of phosphogypsum specimens by adding waste wood fibre. Construction and Building Materials, 2022, 331, 127341.	7.2	9
3	Mitigation of Corrosion Initiated by Clâ^' and SO42â^'-ions in Blast Furnace Cement Concrete Mixed with Sea Water. Materials, 2022, 15, 3003.	2.9	10
4	Alkali Activation of Milled Red Brick Waste and Calcined Illite Clay with Silica Gel Addition. Materials, 2022, 15, 3195.	2.9	1
5	Investigation of Concrete Shrinkage Reducing Additives. Materials, 2022, 15, 3407.	2.9	4
6	Synergic effect between two pozzolans: Clinoptilolite and silica gel by-product in a ternary blend of a Portland cement system. Construction and Building Materials, 2022, 344, 128155.	7.2	5
7	The Investigation of Phosphogypsum Specimens Processed by Press-Forming Method. Waste and Biomass Valorization, 2021, 12, 1539-1551.	3.4	9
8	Alkali Activated Binders Based on Biomass Bottom Ash and Silica By-Product Blends. Waste and Biomass Valorization, 2021, 12, 1095-1105.	3.4	8
9	The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Materials Chemistry and Physics, 2021, 258, 123846.	4.0	17
10	A method to prepare a high-strength building material from press-formed phosphogypsum purified with waste zeolite. Journal of Building Engineering, 2021, 34, 101919.	3.4	11
11	The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste. Minerals (Basel, Switzerland), 2021, 11, 123.	2.0	5
12	Conversion of silica by-product into zeolites by thermo-sonochemical treatment. Ultrasonics Sonochemistry, 2021, 72, 105426.	8.2	9
13	Preparation of Sorbents Containing Straetlingite Phase from Zeolitic By-Product and Their Performance for Ammonium Ion Removal. Molecules, 2021, 26, 3020.	3.8	1
14	The Using of Concrete Wash Water from Ready Mixed Concrete Plants in Cement Systems. Materials, 2021, 14, 2483.	2.9	5
15	Porous alkali-activated materials based on municipal solid waste incineration ash with addition of phosphogypsum powder. Construction and Building Materials, 2021, 301, 123962.	7.2	17
16	The improvement of the water-resistance of the phosphogypsum by adding waste metallurgical sludge. Journal of Building Engineering, 2021, 43, 102861.	3.4	10
17	A comparative assessment of the suitability of phosphogypsum from different origins to be utilised as the binding material of construction products. Journal of Building Engineering, 2021, 44, 102995.	3.4	8
18	Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20–80 °C. Materials, 2021, 14, 5872.	2.9	6

DanutÄ— VaiÄłukynienÄ—

#	Article	IF	CITATIONS
19	Mechanical Properties of Alkali Activated Material Based on Red Clay and Silica Gel Precursor. Environmental and Climate Technologies, 2021, 25, 931-943.	1.4	3
20	Alkali-Activated Material Based on Red Clay and Silica Gel Waste. Waste and Biomass Valorization, 2020, 11, 2973-2982.	3.4	5
21	Synergistic effect of dry sludge from waste wash water of concrete plants and zeolitic by-product on the properties of ternary blended ordinary Portland cements. Journal of Cleaner Production, 2020, 244, 118493.	9.3	8
22	Utilization of ZeoliticWaste in Alkali-Activated Biomass Bottom Ash Blends. Molecules, 2020, 25, 3053.	3.8	4
23	Thaumasite formation by hydration of sulphosilicate clinker. Materials Today Communications, 2020, 25, 101449.	1.9	4
24	Alkali Activated Paste and Concrete Based on of Biomass Bottom Ash with Phosphogypsum. Applied Sciences (Switzerland), 2020, 10, 5190.	2.5	14
25	Clayey Soil Strength Improvement by Using Alkali Activated Slag Reinforcing. Minerals (Basel,) Tj ETQq1 1 0.784	314 rgBT / 2.0	Overlock 10
26	Wood shavings and alkali-activated slag bio-composite. European Journal of Wood and Wood Products, 2020, 78, 513-522.	2.9	8
27	Thermal Properties of Alkali Activated Slag Plaster for Wooden Structures. Scientific Reports, 2020, 10, 726.	3.3	5
28	Removal of ammonium ion from aqueous solutions by using unmodified and H2O2-modified zeolitic waste. Scientific Reports, 2020, 10, 352.	3.3	19
29	Effect of Ordinary Portland Cement and Water Glass on the Properties of Alkali Activated Fly Ash Concrete. Minerals (Basel, Switzerland), 2020, 10, 40.	2.0	5
30	Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering, 2020, 31, 101399.	3.4	40
31	Mechanical Activation on Phosphogypsum: Hydrosodalite System. Waste and Biomass Valorization, 2019, 10, 3485-3491.	3.4	7
32	Effect of AlF3 production waste on the processes of hydration and hardening of the alkali-activated Portland cement with sodium silicate hydrate. Journal of Thermal Analysis and Calorimetry, 2019, 138, 879-887.	3.6	8
33	Zeolitized bottom ashes from biomass combustion as cement replacing components. Construction and Building Materials, 2018, 168, 988-994.	7.2	5
34	Alkali-activated blends of calcined AlF3 production waste and clay. Ceramics International, 2018, 44, 12573-12579.	4.8	7
35	The Influence of Fine Particle Content (Cement Together with Sand Particles up to 0.25 mm) on Rheological Properties of Concrete Mixture. Solid State Phenomena, 2018, 276, 97-102.	0.3	2
36	The influence of sulphur slime on the properties of alkali binding material from biomass bottom ashes. IOP Conference Series: Materials Science and Engineering, 2018, 442, 012015.	0.6	1

DanutÄ— VaiÄłukynienÄ—

#	Article	IF	CITATIONS
37	Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag. Construction and Building Materials, 2018, 184, 485-491.	7.2	55
38	The treatment of phosphogypsum with zeolite to use it in binding material. Construction and Building Materials, 2018, 180, 134-142.	7.2	50
39	Effect of External Carbon Source on Municipal Wastewater at Low Temperatures. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	9
40	From raw materials to NORM by-products. , 2017, , 135-182.		11
41	Blended Cement Systems with Zeolitized Silica Fume. Medziagotyra, 2016, 22, .	0.2	1
42	Advanced mechanical properties and frost damage resistance of ultra-high performance fibre reinforced concrete. Construction and Building Materials, 2016, 126, 26-31.	7.2	36
43	Effects of waste fluid catalytic cracking on the properties of semi-hydrate phosphogypsum. Journal of Cleaner Production, 2016, 137, 150-156.	9.3	40
44	The utilization of biomass bottom ashes in cement system. Journal of Sustainable Architecture and Civil Engineering, 2016, 14, .	0.5	1
45	Influence of zeolitized perlite on blended cement properties. Chemical Industry and Chemical Engineering Quarterly, 2016, 22, 285-292.	0.7	1
46	Blended Cements Produced With Synthetic Zeolite Made from Industrial By-Product. Medziagotyra, 2015, 21, .	0.2	3
47	EFFECT OF MILLED ELECTRICAL CABLE WASTE ON MECHANICAL PROPERTIES OF CONCRETE. Journal of Civil Engineering and Management, 2015, 21, 300-307.	3.5	4
48	Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica. Ultrasonics Sonochemistry, 2015, 27, 515-521.	8.2	31
49	Non-destructive test methods application for structure analysis of ultra-high performance concrete after deterioration of cyclic salt-scaling. Mechanika, 2014, 20, .	0.5	2
50	Elaboration of new ceramic composites containing glass fibre production wastes. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2013, 52, 88-92.	1.9	2
51	Effect of AlF3 Production Waste on the Properties of Hardened Cement Paste. Medziagotyra, 2012, 18, .	0.2	5
52	Utilization of by-product waste silica in concrete - based materials. Materials Research, 2012, 15, 561-567.	1.3	29
53	Production of Expanded Clay Pellets by Using Non-selfbloating Clay, Lakes Sapropel and Glycerol. Medziagotyra, 2011, 17, .	0.2	3
54	THE FORMS OF WATER CONNECTION IN SILICATE COMPOUNDS AND BUILDING MATERIALS. Journal of Civil Engineering and Management, 1999, 5, 100-107.	0.0	0

#	Article	IF	CITATIONS
55	The Influence of Phosphogypsum Microstructure on the Main Properties of Press-Formed Samples. Solid State Phenomena, 0, 325, 79-85.	0.3	Ο