Taku Shoji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1521596/publications.pdf Version: 2024-02-01

ΤλΚΗ SHOU

#	Article	IF	CITATIONS
1	Synthesis, Properties, and Redox Behavior of Monoâ€, Bisâ€, and Tris[1,1,4,4,â€tetracyanoâ€2â€(1â€azulenyl)â€3â€butadienyl] Chromophores Binding with Benzene and Thioph Cores. Chemistry - A European Journal, 2008, 14, 8398-8408.	ienæ3	118
2	Azuleneâ€Based Donor–Acceptor Systems: Synthesis, Optical, and Electrochemical Properties. Chemistry - A European Journal, 2017, 23, 16696-16709.	3.3	78
3	Recent Advances in the Development of Methods for the Preparation of Functionalized Azulenes for Electrochromic Applications. Synlett, 2011, 2011, 2279-2298.	1.8	72
4	Reactions between 1â€Ethynylazulenes and 7,7,8,8â€Tetracyanoquinodimethane (TCNQ): Preparation, Properties, and Redox Behavior of Novel Azuleneâ€Substituted Redoxâ€Active Chromophores. European Journal of Organic Chemistry, 2009, 2009, 4316-4324.	2.4	60
5	Synthesis of Redoxâ€Active, Intramolecular Chargeâ€Transfer Chromophores by the [2+2] Cycloaddition of Ethynylated 2 <i>H</i> â€Cyclohepta[<i>b</i>]furanâ€2â€ones with Tetracyanoethylene. Chemistry - A European Journal, 2011, 17, 5116-5129.	3.3	53
6	Synthesis of push–pull chromophores by the sequential [2 + 2] cycloaddition of 1-azulenylbutadiynes with tetracyanoethylene and tetrathiafulvalene. Organic and Biomolecular Chemistry, 2012, 10, 8308.	2.8	49
7	Synthesis and Redox Behavior of 1â€Azulenyl Sulfides and Efficient Synthesis of 1,1′â€Biazulenes. European Journal of Organic Chemistry, 2008, 2008, 1242-1252.	2.4	43
8	Synthesis of 2â€Azulenylâ€1,1,4,4â€ŧetracyanoâ€3â€ferrocenylâ€1,3â€butadienes by [2+2] Cycloaddition of (Ferrocenylethynyl)azulenes with Tetracyanoethylene. Chemistry - A European Journal, 2013, 19, 5721-5730.	3.3	43
9	Synthesis, Properties, and Redox Behavior of Tetracyanobutadiene and Dicyanoquinodimethane Chromophores Bearing Two Azulenyl Substituents. Journal of Organic Chemistry, 2013, 78, 12513-12524.	3.2	39
10	Synthesis of heteroarylazulenes: transition metal free coupling strategy of azulene with heterocycles. Tetrahedron Letters, 2007, 48, 1099-1103.	1.4	37
11	Synthesis of 1,3â€Bis(tetracyanoâ€2â€azulenylâ€3â€butadienyl)azulenes by the [2+2] Cycloaddition–Retroelectrocyclization of 1,3â€Bis(azulenylethynyl)azulenes with Tetracyanoethylene. Chemistry - A European Journal, 2014, 20, 11903-11912.	3.3	37
12	The novel transition metal free synthesis of 1,1′-biazulene. Tetrahedron Letters, 2007, 48, 4999-5002.	1.4	36
13	Synthesis of donor–acceptor chromophores by the [2 + 2] cycloaddition of arylethynyl-2H-cyclohepta[b]furan-2-ones with 7,7,8,8-tetracyanoquinodimethane. Organic and Biomolecular Chemistry, 2012, 10, 2431.	2.8	35
14	Synthesis and Properties of Azulene‣ubstituted Donor–Acceptor Chromophores Connected by Arylamine Cores. European Journal of Organic Chemistry, 2013, 2013, 7785-7799.	2.4	34
15	Synthesis and [2+2] Cycloaddition with Tetracyanoethylene of Ene–Diyne Scaffolds Bearing Ferrocenes at the Periphery. European Journal of Organic Chemistry, 2011, 2011, 5134-5140.	2.4	31
16	Synthesis of 2-Azulenyltetrathiafulvalenes by Palladium-Catalyzed Direct Arylation of 2-Chloroazulenes with Tetrathiafulvalene and Their Optical and Electrochemical Properties. Journal of Organic Chemistry, 2017, 82, 1657-1665.	3.2	31
17	Synthesis and Intramolecular Pericyclization of 1-Azulenyl Thioketones. Journal of Organic Chemistry, 2008, 73, 2256-2263.	3.2	30
18	Electrophilic <i>ipso</i> ‣ubstitution and Some Unique Reaction Behavior of 1,3,6â€Triâ€ <i>tert</i> â€butylazulene. European Journal of Organic Chemistry, 2009, 2009, 1554-1563.	2.4	30

#	Article	IF	CITATIONS
19	First synthesis of 1-(indol-2-yl)azulenes by the Vilsmeier–Haack type arylation with triflic anhydride as an activating reagent. Tetrahedron Letters, 2012, 53, 1493-1496.	1.4	30
20	Synthesis of azuleno[2,1- <i>b</i>]thiophenes by cycloaddition of azulenylalkynes with elemental sulfur and their structural, optical and electrochemical properties. Organic Chemistry Frontiers, 2019, 6, 2801-2811.	4.5	29
21	Development of Heterocycle-Substituted and Fused Azulenes in the Last Decade (2010–2020). International Journal of Molecular Sciences, 2020, 21, 7087.	4.1	29
22	Synthesis of 5â€Heteroaryl―and 5,7â€Bis(heteroaryl)azulenes by Electrophilic Substitution of 1,3â€Diâ€ <i>tert</i> â€Butylazulene with Triflates of Nâ€Containing Heterocycles. European Journal of Organic Chemistry, 2010, 2010, 1059-1069.	2.4	27
23	Synthesis and Properties of Mono-, Bis-, Tris-, and Tetrakis[1,1,4,4-tetracyano-2-(1-azulenyl)-1,3-butadien-3-yl] Chromophores Connected to a Benzene Ring by Phenylethynyl- and 2-Thienylethynyl Spacers. Bulletin of the Chemical Society of Japan, 2012, 85, 761-773.	3.2	27
24	Synthesis, Properties, and Redox Behavior of 1,1,4,4â€Tetracyanoâ€2â€ferrocenylâ€1,3â€butadienes Connected Aryl, Biaryl, and Teraryl Spacers. Chemistry - A European Journal, 2015, 21, 402-409.	by 3.3	27
25	Synthesis of 5-heteroarylazulenes: first selective electrophilic substitution at the 5-position of azulene. Tetrahedron Letters, 2007, 48, 3009-3012.	1.4	26
26	Heteroarylation of 1â€Azulenyl Methyl Sulfide: Twoâ€Step Synthetic Strategy for 1â€Methylthioâ€3â€(heteroaryl)azulenes Using the Triflate of <i>N</i> â€Containing Heterocycles. European Journal of Organic Chemistry, 2008, 2008, 5823-5831.	2.4	25
27	Synthesis of 1â€Heteroaryl―and 1,3â€Bis(heteroaryl)azulenes: Electrophilic Heteroarylation of Azulenes with the Triflates of Nâ€Containing Heteroarenes. European Journal of Organic Chemistry, 2011, 2011, 5311-5322.	2.4	25
28	Synthesis of 2â€Aminofurans by Sequential [2+2] Cycloaddition–Nucleophilic Addition of 2â€Propynâ€1â€ols with Tetracyanoethylene and Amineâ€Induced Transformation into 6â€Aminopentafulvenes. Chemistry - A European Journal, 2017, 23, 5126-5136.	3.3	25
29	The Preparation and Properties of Heteroarylazulenes and Hetero-Fused Azulenes. Advances in Heterocyclic Chemistry, 2018, 126, 1-54.	1.7	25
30	3â€Thienyl Substituents by Palladiumâ€Catalyzed Crossâ€Coupling Reaction of 2―and 6â€Haloazulenes with Thienylmagnesium Ate Complexes. European Journal of Organic Chemistry, 2009, 2009, 4307-4315.	2.4	24
31	Synthesis of 1-(pyridyl, quinolyl, and isoquinolyl)azulenes by Reissert–Henze type reaction. Tetrahedron Letters, 2010, 51, 5127-5130.	1.4	24
32	Direct synthesis of 2-arylazulenes by [8+2] cycloaddition of 2H-cyclohepta[b]furan-2-ones with silyl enol ethers. Chemical Communications, 2020, 56, 1485-1488.	4.1	24
33	Synthesis of Novel Thiophene-Fused 1,1'-Biazulene Derivative by the Reaction of Azuleno[1,2-b]thiophene with N-lodosuccinimide. Heterocycles, 2013, 87, 303.	0.7	23
34	Synthesis of 2- and 6-thienylazulenes by palladium-catalyzed direct arylation of 2- and 6-haloazulenes with thiophene derivatives. Organic and Biomolecular Chemistry, 2015, 13, 10191-10197.	2.8	23
35	Synthesis, Stabilities, and Redox Behavior of Mono-, Di-, and Tetracations Composed of Di(1-azulenyl)methylium Units Connected to a Benzene Ring by Phenyl- and 2-Thienylacetylene Spacers. A Concept of a Cyanineâ°Cyanine Hybrid as a Stabilized Electrochromic System. Journal of Organic Chemistry, 2007, 72, 162-172.	3.2	22
36	Synthesis of azulene-substituted benzofurans and isocoumarins via intramolecular cyclization of 1-ethynylazulenes, and their structural and optical properties. Organic and Biomolecular Chemistry, 2018, 16, 480-489.	2.8	22

#	Article	IF	CITATIONS
37	Synthesis of 2-Methyl-1-azulenyl Tetracyanobutadienes and Dicyanoquinodimethanes: Substituent Effect of 2-Methyl Moiety on the Azulene Ring toward the Optical and Electrochemical Properties. Journal of Organic Chemistry, 2018, 83, 6690-6705.	3.2	22
38	Synthesis of azulenophthalimides by phosphine-mediated annulation of 1,2-diformylazulenes with maleimides. Organic Chemistry Frontiers, 2019, 6, 195-204.	4.5	22
39	Synthesis, Properties and Redox Behavior of Ene–Diyne Scaffolds Bearing 1―and 2â€Azulenyl Groups at the Periphery. European Journal of Organic Chemistry, 2013, 2013, 957-964.	2.4	20
40	Molecular Transformation to Pyrroles, Pentafulvenes, and Pyrrolopyridines by [2+2] Cycloaddition of Propargylamines with Tetracyanoethylene. Chemistry - A European Journal, 2020, 26, 1931-1935.	3.3	20
41	The Synthesis of Heteroarylazulene. Heterocycles, 2005, 66, 91.	0.7	19
42	First Synthesis of 2-Heteroarylazulenes by the Electrophilic Substitution of Azulene with Triflate of N-Containing Heterocycles. Heterocycles, 2012, 85, 35.	0.7	17
43	Synthesis, Properties, and Redox Behavior of Tris(1â€azulenyltetracyanobutadiene) and Tris[1â€azulenylbis(tetracyanobutadiene)] Chromophores Connected to a 1,3,5â€Iri(1â€azulenyl)benzene Core. European Journal of Organic Chemistry, 2015, 2015, 1979-1990.	2.4	17
44	Synthesis of 6-Amino- and 6-Arylazoazulenes via Nucleophilic Aromatic Substitution and Their Reactivity and Properties. Journal of Organic Chemistry, 2019, 84, 1257-1275.	3.2	17
45	Synthesis and Properties of 6-Methoxy- and 6-Dimethylamino-1-methylthio- and 1,3-Bis(methylthio)azulenes and Triflic Anhydride-Mediated Synthesis of Their Biaryl Derivatives. Bulletin of the Chemical Society of Japan, 2014, 87, 141-154.	3.2	16
46	Synthesis of 2-amino- and 2-arylazoazulenes via nucleophilic aromatic substitution of 2-chloroazulenes with amines and arylhydrazines. Organic and Biomolecular Chemistry, 2017, 15, 3917-3923.	2.8	16
47	Synthesis of 1-azulenyl ketones by BrÃ,nsted acid mediated hydration of 1-azulenylalkynes. RSC Advances, 2016, 6, 78303-78306.	3.6	15
48	Synthesis and Properties of (3â€Phenylâ€1â€azulenyl)tetracyanobetadienes and Tris(aryltetracyanobetadiene)s Connected with 1,3,5‶ri(1â€azulenyl)benzene Core. ChemistrySelect, 2016, 1, 49-57.	1.5	15
49	The [2+2] Cycloaddition Reaction of Ethynylated 2H-Cyclohepta[b]furan-2-ones with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. Heterocycles, 2011, 83, 2271.	0.7	14
50	Synthesis of Azulene Derivatives from 2H-Cyclohepta[b]furan-2-ones as Starting Materials: Their Reactivity and Properties. International Journal of Molecular Sciences, 2021, 22, 10686.	4.1	14
51	Synthesis and Redox Behavior of Bis(3â€methylthioâ€1â€azulenyl)methyl Cations and Dications Connected by 2â€Thienyl and 2,5â€Thiophenediyl Spacers. European Journal of Organic Chemistry, 2011, 2011, 584-592.	2.4	13
52	Synthesis, Properties, and Redox Behavior of Ferrocenyl-1,1,4,4-tetracyano-1,3-butadienes Connected by Arylamine and Azobenzene Spacers. Bulletin of the Chemical Society of Japan, 2015, 88, 1338-1346.	3.2	13
53	Synthesis and photophysical properties of azuleno[1′,2′:4,5]pyrrolo[2,1-b]quinazoline-6,14-diones: Azulene analogs of tryptanthrin. Tetrahedron, 2018, 74, 7018-7029.	1.9	12
54	Synthesis of Azulen-3-ylheterocyclic Compounds Using 2-(3-Methoxycarbonylazulen-1-yl)ethynyltriphenylphosphonium Bromide. Heterocycles, 2004, 64, 305.	0.7	11

#	Article	IF	CITATIONS
55	Synthesis and Properties of Ferrocenylmethyleneâ€Bridged Calix[4]azulene and a New Example of Bis(1â€azulenyl)ferrocenylmethylium Ion. European Journal of Organic Chemistry, 2009, 2009, 5948-5952.	2.4	11
56	Synthesis, Properties, and Crystal Structure of DDQ-Adducts of Ethynylated 2H-Cyclohepta[b]furan-2-ones. Heterocycles, 2014, 88, 319.	0.7	11
57	Synthesis of 2-Aryl- and 6-Heteroaryl-1,3-di(4-pyridyl)azulenes by Katritzky's Pyridylation of 2-Aryl- and 6-Heteroarylazulenes. Heterocycles, 2014, 89, 2588.	0.7	11
58	Reaction of 2H-Cyclohepta[b]furan-2-ones with Pyridinium Salts of Trifluoromethanesulfonic Anhydride. Heterocycles, 2006, 69, 119.	0.7	11
59	Synthesis of 1,6′-Bi- and 1,6′:3,6′′-Terazulenes from 1-Pyridyl- and 1,3-Di(pyridyl)azulenes by the Ziegler–Hafner Method. Chemistry Letters, 2013, 42, 638-640.	1.3	10
60	Synthesis of phthalimides cross-conjugated with an azulene ring, and their structural, optical and electrochemical properties. Organic and Biomolecular Chemistry, 2020, 18, 2274-2282.	2.8	10
61	Synthesis, Properties, and Redox Behavior of Ferroceneâ€Substituted Bis(3â€methylthioâ€1â€azulenyl)methylium Ions. European Journal of Inorganic Chemistry, 2010, 2010, 4886-4891.	2.0	9
62	Facile Synthesis of 2,3-Disubstituted Pyrroles from 2-Substituted 1-Pyrrolines. Heterocycles, 2012, 85, 1187.	0.7	9
63	Synthesis of 2,6-Diaminoazulenes by the SNAr Reaction with Cyclic Amines. Heterocycles, 2015, 90, 85.	0.7	9
64	Synthesis, Reactivity, and Properties of Benz[<i>a</i>]azulenes <i>via</i> the [8 + 2] Cycloaddition of 2 <i>H</i> -Cyclohepta[<i>b</i>]furan-2-ones with an Enamine. Journal of Organic Chemistry, 2022, , .	3.2	9
65	Molecular Transformation of 2â€Methylazulenes: An Efficient and Practical Synthesis of 2â€Formyl―and 2â€Ethynylazulenes. European Journal of Organic Chemistry, 2018, 2018, 1145-1157.	2.4	8
66	Synthesis and Solvatochromic Properties of Azulene-substituted Donor–Acceptor-type Polymethine Dyes. Chemistry Letters, 2012, 41, 1644-1646.	1.3	7
67	Synthesis of 1,2′-Biazulenes by Palladium-Catalyzed Unusual Homocoupling Reaction of 1-Haloazulenes in the Presence of Ferrocene. Synthesis, 2016, 48, 2438-2448.	2.3	7
68	2,2′-Biazulene diimide-based conjugate polymers for high-performance field-effect transistors. Science China Chemistry, 2018, 61, 973-974.	8.2	7
69	Synthesis and Electrochemical Properties of Azulene-Substituted Tetracyanobutadiene and Dicyanoquinodimethane Chromophores Connected with Naphthalene Cores. Heterocycles, 2017, 95, 353.	0.7	7
70	Synthesis and redox behavior of ene–diyne scaffolds that bear ferrocenes at the periphery. Tetrahedron Letters, 2009, 50, 2825-2827.	1.4	6
71	Synthesis and Redox Behavior of Cyanovinyl-Substituted 2H-Cyclohepta[b]furan-2-ones. Heterocycles, 2012, 86, 305.	0.7	6
72	Synthesis, Photophysical and Electrochemical Properties of 1-, 2-, and 6-(2-Benzofuryl)azulenes. Bulletin of the Chemical Society of Japan, 2021, 94, 1000-1009.	3.2	6

#	Article	IF	CITATIONS
73	A Novel Approach to 5,5'-Diisopropyl-3,3'-bi-2H-cyclohepta[b]furan-2-one. Heterocycles, 2007, 73, 237.	0.7	6
74	Synthesis and Reactivity of 3-Methylsulfinyl-2H-cyclohepta[b]furan-2-ones. Heterocycles, 2008, 76, 759.	0.7	6
75	Synthesis of 2,2′-Diamino-1,1′-biazulenes by the Copper-catalyzed Homocoupling Reaction of 2-Aminoazulenes. Chemistry Letters, 2014, 43, 1122-1124.	1.3	5
76	Sensitive screening of methamphetamine stimulant using potential-modulated electrochemiluminescence. Analytica Chimica Acta, 2022, 1191, 339229.	5.4	5
77	Synthesis of thiophene-fused heptalenes by cycloaddition of azulenothiophenes with dimethyl acetylenedicarboxylate. Scientific Reports, 2020, 10, 12477.	3.3	4
78	Synthesis of Azulene-Substituted Tetraarylpyrroles by Reaction of 1-Azulenyl Ketones with Benzoin and Ammonium Acetate. Heterocycles, 2017, 94, 1870.	0.7	4
79	Synthesis of 2-Amino-1-cyanoazulenes: Substituent Effect on 2H-Cyclohepta[b]furan-2-ones toward the Reaction with Malononitrile. Heterocycles, 2018, 97, 1068.	0.7	4
80	Cyanine–cyanine hybrid structure as a stabilized polyelectrochromic system: synthesis, stabilities, and redox behavior of di(1-azulenyl)methylium units connected with electron-accepting π-electron systems. Arkivoc, 2018, 2018, 145-169.	0.5	3
81	Frontispiece: Azuleneâ€Based Donor–Acceptor Systems: Synthesis, Optical, and Electrochemical Properties. Chemistry - A European Journal, 2017, 23, .	3.3	1
82	Azuleneâ€Substituted Donorâ€Acceptor Polymethines and 1,6'â€Biâ€; 1,6′;3,6′â€Terâ€; and Quinq Salts: Synthesis, and Structural, Optical, and Electrochemical Properties. ChemPlusChem, 2021, 86, 946-966.	ueazulene 2.8	es via Zincke 1
83	Synthesis of Azulen-3-ylheterocyclic Compounds Using 2-(3-Methoxycarbonylazulen-1-yl)ethynyltriphenylphosphonium Bromide ChemInform, 2005, 36, no.	0.0	0
84	Ion Transfer Voltammetry of Azulene Sulfonates at a Liquid Liquid Interface. Bunseki Kagaku, 2021, 70, 529-533.	0.2	0
85	Synthesis of 8-Aryl-2 <i>H</i> -cyclohepta[<i>b</i>]furan-2-ones and Transformation into 4-Arylazulenes. Chemistry Letters, 2022, 51, 533-537.	1.3	0
86	Azuleno[6,5-b]indoles: Palladium-Catalyzed Oxidative Ring-Closing Reaction of 6-(Arylamino)azulenes. Heterocycles, 2022, 105, 383.	0.7	0