
Stuart J Rowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1521512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic Covalent Chemistry. Angewandte Chemie - International Edition, 2002, 41, 898-952.	7.2	2,245
2	Optically healable supramolecular polymers. Nature, 2011, 472, 334-337.	13.7	1,568
3	Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Materials, 2011, 10, 14-27.	13.3	1,394
4	Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis. Science, 2008, 319, 1370-1374.	6.0	881
5	A Healable Supramolecular Polymer Blend Based on Aromatic Ï€â^'Ï€ Stacking and Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2010, 132, 12051-12058.	6.6	779
6	Multistimuli, Multiresponsive Metallo-Supramolecular Polymers. Journal of the American Chemical Society, 2003, 125, 13922-13923.	6.6	673
7	Supramolecular gels formed from multi-component low molecular weight species. Chemical Society Reviews, 2012, 41, 6089.	18.7	624
8	Nucleobases as supramolecular motifs. Chemical Society Reviews, 2005, 34, 9.	18.7	557
9	Understanding the Mechanism of Gelation and Stimuli-Responsive Nature of a Class of Metallo-Supramolecular Gels. Journal of the American Chemical Society, 2006, 128, 11663-11672.	6.6	508
10	A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chemical Communications, 2009, , 6717.	2.2	475
11	Thermo-, Photo-, and Chemo-Responsive Shape-Memory Properties from Photo-Cross-Linked Metallo-Supramolecular Polymers. Journal of the American Chemical Society, 2011, 133, 12866-12874.	6.6	451
12	A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2007, 2, 765-769.	15.6	393
13	Inherently Photohealable and Thermal Shape-Memory Polydisulfide Networks. ACS Macro Letters, 2013, 2, 694-699.	2.3	349
14	Supramolecular Polymerizations and Main-Chain Supramolecular Polymers. Macromolecules, 2009, 42, 6823-6835.	2.2	315
15	High-Strength, Healable, Supramolecular Polymer Nanocomposites. Journal of the American Chemical Society, 2012, 134, 5362-5368.	6.6	303
16	Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect. Macromolecules, 2011, 44, 6827-6835.	2.2	301
17	Utilization of a Combination of Weak Hydrogen-Bonding Interactions and Phase Segregation to Yield Highly Thermosensitive Supramolecular Polymers. Journal of the American Chemical Society, 2005, 127, 18202-18211.	6.6	266
18	Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 2007, 13, 7828-7836.	1.7	242

#	Article	IF	CITATIONS
19	pH-Responsive Cellulose Nanocrystal Gels and Nanocomposites. ACS Macro Letters, 2012, 1, 1001-1006.	2.3	241
20	Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose. Biomacromolecules, 2009, 10, 712-716.	2.6	235
21	A Supramolecular Polymer Based on Tweezer-Type Ï€â^ï€ Stacking Interactions: Molecular Design for Healability and Enhanced Toughness. Chemistry of Materials, 2011, 23, 6-8.	3.2	222
22	Mechanically-compliant intracortical implants reduce the neuroinflammatory response. Journal of Neural Engineering, 2014, 11, 056014.	1.8	219
23	Metal/Ligand-Induced Formation of Metallo-Supramolecular Polymers. Macromolecules, 2005, 38, 5060-5068.	2.2	200
24	Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie - International Edition, 2006, 45, 5825-5829.	7.2	199
25	Biomimetic mechanically adaptive nanocomposites. Progress in Polymer Science, 2010, 35, 212-222.	11.8	196
26	Poly[<i>n</i>]catenanes: Synthesis of molecular interlocked chains. Science, 2017, 358, 1434-1439.	6.0	196
27	Effect of Sterics and Degree of Cross-Linking on the Mechanical Properties of Dynamic Poly(alkylurea–urethane) Networks. Macromolecules, 2017, 50, 5051-5060.	2.2	186
28	Natural Biopolymers: Novel Templates for the Synthesis of Nanostructures. Langmuir, 2010, 26, 8497-8502.	1.6	167
29	Automated Recognition, Sorting, and Covalent Self-Assembly by Predisposed Building Blocks in a Mixture. Journal of the American Chemical Society, 1997, 119, 2578-2579.	6.6	164
30	Optically healable polymers. Chemical Society Reviews, 2013, 42, 7278.	18.7	162
31	Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. Journal of Materials Chemistry, 2010, 20, 180-186.	6.7	156
32	Metal–ligand induced supramolecular polymerization: A route to responsive materials. Faraday Discussions, 2005, 128, 43-53.	1.6	154
33	Stimuli-Responsive Reversible Two-Level Adhesion from a Structurally Dynamic Shape-Memory Polymer. ACS Applied Materials & Interfaces, 2016, 8, 11041-11049.	4.0	148
34	Stimuli-Responsive Mechanically Adaptive Polymer Nanocomposites. ACS Applied Materials & Interfaces, 2010, 2, 165-174.	4.0	146
35	Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices. Macromolecules, 2012, 45, 4707-4715.	2.2	142
36	Development, processing and applications of bio-sourced cellulose nanocrystal composites. Progress in Polymer Science, 2020, 103, 101221.	11.8	138

#	Article	IF	CITATIONS
37	Material properties and applications of mechanically interlocked polymers. Nature Reviews Materials, 2021, 6, 508-530.	23.3	135
38	Water-Responsive Mechanically Adaptive Nanocomposites Based on Styrene–Butadiene Rubber and Cellulose Nanocrystals—Processing Matters. ACS Applied Materials & Interfaces, 2014, 6, 967-976.	4.0	131
39	Stimuli-responsive, mechanically-adaptive polymer nanocomposites. Journal of Materials Chemistry, 2011, 21, 2812-2822.	6.7	127
40	â€~Living' macrolactonisation: thermodynamically-controlled cyclisation and interconversion of oligocholates. Chemical Communications, 1996, , 319-320.	2.2	126
41	Stimuli-responsive europium-containing metallo-supramolecular polymers. Journal of Materials Chemistry, 2010, 20, 145-151.	6.7	121
42	Rotaxane Formation under Thermodynamic Control. Organic Letters, 1999, 1, 1363-1366.	2.4	119
43	Stress Transfer in Cellulose Nanowhisker Composites—Influence of Whisker Aspect Ratio and Surface Charge. Biomacromolecules, 2011, 12, 1363-1369.	2.6	117
44	<i>>50th Anniversary Perspective</i> : Solid-State Multistimuli, Multiresponsive Polymeric Materials. Macromolecules, 2017, 50, 8845-8870.	2.2	117
45	Rheological Behavior of Shear-Responsive Metallo-Supramolecular Gels. Macromolecules, 2004, 37, 3529-3531.	2.2	113
46	Bioinspired Water-Enhanced Mechanical Gradient Nanocomposite Films That Mimic the Architecture and Properties of the Squid Beak. Journal of the American Chemical Society, 2013, 135, 5167-5174.	6.6	112
47	Dynamic Hemicarcerands and Hemicarceplexes. Organic Letters, 2000, 2, 2411-2414.	2.4	111
48	Toward Daisy Chain Polymers:  "Wittig Exchange―of Stoppers in [2]Rotaxane Monomers. Organic Letters, 2000, 2, 759-762.	2.4	109
49	Stress-Transfer in Anisotropic and Environmentally Adaptive Cellulose Whisker Nanocomposites. Biomacromolecules, 2010, 11, 762-768.	2.6	106
50	Reinforcement of Optically Healable Supramolecular Polymers with Cellulose Nanocrystals. Macromolecules, 2014, 47, 152-160.	2.2	102
51	Precision Molecular Grafting:Â Exchanging Surrogate Stoppers in [2]Rotaxanes. Journal of the American Chemical Society, 2000, 122, 164-165.	6.6	100
52	Control of Gel Morphology and Properties of a Class of Metallo-Supramolecular Polymers by Good/Poor Solvent Environments. Macromolecules, 2009, 42, 236-246.	2.2	98
53	Synthesis and Properties of Metallo-Supramolecular Poly(p-phenylene ethynylene)s. Macromolecules, 2006, 39, 651-657.	2.2	95
54	Synthesis and optical properties of metallo-supramolecular polymers. Chemical Communications, 2005, , 319.	2.2	91

#	Article	IF	CITATIONS
55	Mechanically adaptive nanocomposites for neural interfacing. MRS Bulletin, 2012, 37, 581-589.	1.7	91
56	Triphenylphosphonium-Stoppered [2]Rotaxanes. Organic Letters, 1999, 1, 129-132.	2.4	88
57	Thermodynamic Synthesis of Rotaxanes by Imine Exchange. Organic Letters, 1999, 1, 1913-1916.	2.4	86
58	Metallo-, Thermo-, and Photoresponsive Shape Memory and Actuating Liquid Crystalline Elastomers. Macromolecules, 2015, 48, 3239-3246.	2.2	86
59	Tailoring the Properties of Guanosine-Based Supramolecular Hydrogels. Langmuir, 2009, 25, 8833-8840.	1.6	82
60	Trapping Dynamic Disulfide Bonds in the Hard Segments of Thermoplastic Polyurethane Elastomers. Macromolecular Chemistry and Physics, 2017, 218, 1600320.	1.1	80
61	Miscanthus Giganteus: A commercially viable sustainable source of cellulose nanocrystals. Carbohydrate Polymers, 2017, 155, 230-241.	5.1	80
62	Metallo-Supramolecular Polymerization: A Route to Easy-To-Process Organic/Inorganic Hybrid Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 91-103.	1.9	78
63	Vapochromic and mechanochromic films from square-planar platinum complexes in polymethacrylates. Journal of Materials Chemistry, 2012, 22, 14196.	6.7	78
64	Nanoemulsions and Nanolatexes Stabilized by Hydrophobically Functionalized Cellulose Nanocrystals. Macromolecules, 2017, 50, 6032-6042.	2.2	75
65	Toward potential supramolecular tissue engineering scaffolds based on guanosine derivatives. Chemical Science, 2012, 3, 564-572.	3.7	74
66	Polyimide Cellulose Nanocrystal Composite Aerogels. Macromolecules, 2016, 49, 1692-1703.	2.2	73
67	Macrocycles Derived from Cinchona Alkaloids:  A Thermodynamic vs Kinetic Study. Journal of Organic Chemistry, 1998, 63, 1536-1546.	1.7	72
68	Influence of Metal Ion and Polymer Core on the Melt Rheology of Metallosupramolecular Films. Macromolecules, 2012, 45, 473-480.	2.2	72
69	Structure-Directed Synthesis under Thermodynamic Control: Macrocyclic Trimers from Cinchona Alkaloids. Angewandte Chemie International Edition in English, 1996, 35, 2143-2145.	4.4	69
70	Dynamic Covalent Chemistry. Angewandte Chemie - International Edition, 2002, 41, 1460-1460.	7.2	69
71	Structural origin of the thixotropic behavior of a class of metallosupramolecular gels. Tetrahedron, 2007, 63, 7419-7431.	1.0	63
72	Post-Assembly Processing of [2]Rotaxanes. Chemistry - A European Journal, 2002, 8, 5170-5183.	1.7	60

Stuart J Rowan

#	Article	IF	CITATIONS
73	Nucleobase-induced supramolecular polymerization in the solid state. Journal of Polymer Science Part A, 2003, 41, 3589-3596.	2.5	60
74	Topological Effects in Isolated Poly[<i>n</i>]catenanes: Molecular Dynamics Simulations and Rouse Mode Analysis. ACS Macro Letters, 2018, 7, 938-943.	2.3	60
75	Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites. ACS Central Science, 2017, 3, 886-894.	5.3	58
76	Influence of resveratrol release on the tissue response to mechanically adaptive cortical implants. Acta Biomaterialia, 2016, 29, 81-93.	4.1	57
77	A Rotaxane-Like Complex with Controlled-Release Characteristics. Organic Letters, 2000, 2, 3631-3634.	2.4	56
78	Decoupling Optical Properties in Metallo-Supramolecular Poly(<i>p</i> -phenylene ethynylene)s. Macromolecules, 2008, 41, 2157-2163.	2.2	55
79	Liquid-Crystalline Supramolecular Polymers Formed through Complementary Nucleobase-Pair Interactions. Chemistry - A European Journal, 2006, 12, 446-456.	1.7	52
80	Synthesis and Properties of Metallo-Supramolecular Poly(p-xylylene)s. Macromolecules, 2006, 39, 4069-4075.	2.2	49
81	Strong, Rebondable, Dynamic Cross-Linked Cellulose Nanocrystal Polymer Nanocomposite Adhesives. ACS Applied Materials & Interfaces, 2018, 10, 30723-30731.	4.0	49
82	An hermaphroditic [c2]daisy chain. Chemical Communications, 2002, , 2948-2949.	2.2	48
83	Open-to-Air RAFT Polymerization in Complex Solvents: From Whisky to Fermentation Broth. ACS Macro Letters, 2018, 7, 406-411.	2.3	48
84	Effects of Shape on Thermodynamic Cyclizations of Cinchona Alkaloids. Journal of Organic Chemistry, 1999, 64, 5804-5814.	1.7	47
85	Effect of monomer structure on the gelation of a class of metallo-supramolecular polymers. Soft Matter, 2009, 5, 4647.	1.2	47
86	Structure and Gelation Mechanism of Tunable Guanosine-Based Supramolecular Hydrogels. Langmuir, 2010, 26, 10093-10101.	1.6	46
87	Probing the Structure, Composition, and Spatial Distribution of Ligands on Gold Nanorods. Nano Letters, 2015, 15, 5730-5738.	4.5	46
88	Ammonium Ion Binding with Pyridine-Containing Crown Ethers. Organic Letters, 2000, 2, 2947-2950.	2.4	45
89	Molecular Engineering of Supramolecular Scaffold Coatings that Can Reduce Static Platelet Adhesion. Journal of the American Chemical Society, 2008, 130, 1466-1476.	6.6	45
90	Making molecular-necklaces from rotaxanes. Tetrahedron, 2002, 58, 807-814.	1.0	44

#	Article	IF	CITATIONS
91	Supramolecular Interactions in the Formation of Thermotropic Liquid Crystalline Polymers. , 2007, , 119-149.		44
92	Thermodynamics and Structure of Poly[<i>n</i>]catenane Melts. Macromolecules, 2020, 53, 3390-3408.	2.2	44
93	Fluorescent supramolecular liquid crystalline polymers from nucleobase-terminated monomers. Chemical Communications, 2003, , 2428-2429.	2.2	43
94	Thermoresponsive Shape-Memory Aerogels from Thiol–Ene Networks. Chemistry of Materials, 2016, 28, 2341-2347.	3.2	42
95	Dynamic reaction-induced phase separation in tunable, adaptive covalent networks. Chemical Science, 2020, 11, 5028-5036.	3.7	41
96	Tetrathiafulvalenenaphthalenophanes:Â Planar Chirality andcis/transPhotoisomerization. Journal of Organic Chemistry, 2000, 65, 4120-4126.	1.7	40
97	Enhancing the Mechanical Properties of Guanosine-Based Supramolecular Hydrogels with Guanosine-Containing Polymers. Macromolecules, 2014, 47, 1810-1818.	2.2	40
98	Metallo-Responsive Liquid Crystalline Monomers and Polymers. Chemistry of Materials, 2011, 23, 3525-3533.	3.2	39
99	Dynamics of poly[n]catenane melts. Journal of Chemical Physics, 2020, 152, 214901.	1.2	39
100	Controlling the Rate of Water-Induced Switching in Mechanically Dynamic Cellulose Nanocrystal Composites. Macromolecules, 2013, 46, 8203-8212.	2.2	38
101	Fabrication of Electrically Conductive Metal Patterns at the Surface of Polymer Films by Microplasma-Based Direct Writing. ACS Applied Materials & Interfaces, 2014, 6, 3099-3104.	4.0	38
102	Self-assembly and alignment of semiconductor nanoparticles on cellulose nanocrystals. Journal of Materials Science, 2011, 46, 5672-5679.	1.7	37
103	Redox-induced polymerisation/depolymerisation of metallo-supramolecular polymers. Polymer Chemistry, 2012, 3, 3132.	1.9	37
104	Surrogate-stoppered [2]rotaxanes: a new route to larger interlocked architectures. Polymers for Advanced Technologies, 2002, 13, 777-787.	1.6	36
105	Preparation of cellulose nanofibers from Miscanthus x. Giganteus by ammonium persulfate oxidation. Carbohydrate Polymers, 2019, 212, 30-39.	5.1	35
106	Ion-Conducting Dynamic Solid Polymer Electrolyte Adhesives. ACS Macro Letters, 2020, 9, 500-506.	2.3	35
107	Engineering diversity into dynamic combinatorial libraries by use of a small flexible building block. New Journal of Chemistry, 1998, 22, 1015-1018.	1.4	34
108	<i>In Situ</i> Formation of Metal Nanoparticle Composites via "Soft―Plasma Electrochemical Reduction of Metallosupramolecular Polymer Films. Macromolecules, 2012, 45, 8201-8210.	2.2	33

Stuart J Rowan

#	Article	IF	CITATIONS
109	Thermoresponsive Supramolecular Polymer Network Comprising Pyrene-Functionalized Gold Nanoparticles and a Chain-Folding Polydiimide. Macromolecules, 2012, 45, 5567-5574.	2.2	33
110	Polycatenanes: synthesis, characterization, and physical understanding. Chemical Society Reviews, 2022, 51, 4928-4948.	18.7	33
111	Ring-opening metathesis polymerization as a route to controlled copolymers of ethylene and polar monomers: Synthesis of ethylene-vinyl chloride-like copolymers. Journal of Polymer Science Part A, 2003, 41, 2107-2116.	2.5	31
112	Improved synthesis of functionalized mesogenic 2,6-bisbenzimidazolylpyridine ligands. Tetrahedron, 2008, 64, 8488-8495.	1.0	30
113	Impact of Dynamic Bond Concentration on the Viscoelastic and Mechanical Properties of Dynamic Poly(alkylureaâ€ <i>co</i> â€urethane) Networks. Macromolecular Chemistry and Physics, 2020, 221, 1900440.	1.1	30
114	Directed Self-Assembly of Metallosupramolecular Polymers at the Polymer–Polymer Interface. ACS Macro Letters, 2012, 1, 882-887.	2.3	28
115	Synthesis and kinetic cyclisation of quinine-derived oligomers. Tetrahedron Letters, 1996, 37, 6013-6016.	0.7	27
116	Toward Interlocked Molecules beyond Catenanes and Rotaxanes. Organic Letters, 2000, 2, 2943-2946.	2.4	27
117	Facile Reduction of Poly(2,5-dialkoxy-p-phenylene ethynylene)s:Â An Efficient Route for the Synthesis of Poly(2,5-dialkoxy-p-xylylene)s. Macromolecules, 2002, 35, 590-593.	2.2	26
118	Polyvalent Interactions in Unnatural Recognition Processes. Journal of Organic Chemistry, 2004, 69, 4390-4402.	1.7	26
119	<i>In Vitro</i> and <i>in Vivo</i> Analyses of the Effects of Source, Length, and Charge on the Cytotoxicity and Immunocompatibility of Cellulose Nanocrystals. ACS Biomaterials Science and Engineering, 2021, 7, 1450-1461.	2.6	26
120	Micelles make a living. Nature Materials, 2009, 8, 89-91.	13.3	25
121	Enzyme models: design and selection. Current Opinion in Chemical Biology, 1997, 1, 483-490.	2.8	24
122	Structure–Property Relationships in Metallosupramolecular Poly(<i>p</i> -xylylene)s. Macromolecules, 2012, 45, 126-132.	2.2	24
123	Controlling the Morphology of Dynamic Thia-Michael Networks to Target Pressure-Sensitive and Hot Melt Adhesives. ACS Applied Materials & Interfaces, 2021, 13, 27471-27480.	4.0	24
124	Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2020, 12, 54083-54093.	4.0	23
125	Strukturgerichtete Synthese unter thermodynamischer Kontrolle: makrocyclische Trimere aus Chinaâ€Alkaloiden. Angewandte Chemie, 1996, 108, 2283-2285.	1.6	22
126	The balance between electronic and steric effects in the template-directed syntheses of [2]catenanes. Tetrahedron, 2001, 57, 3799-3808.	1.0	22

#	Article	IF	CITATIONS
127	Nonionic surfactant-induced stabilization and tailorability of sugar-amphiphile hydrogels. Soft Matter, 2011, 7, 6984.	1.2	22
128	Discussion on "Aperiodic Copolymers― ACS Macro Letters, 2016, 5, 1-3.	2.3	21
129	Surface-Aided Supramolecular Polymerization: A Route to Controlled Nanoscale Assemblies. Small, 2007, 3, 783-787.	5.2	19
130	Effect of Monomer Structure and Solvent on the Growth of Supramolecular Nanoassemblies on a Graphite Surface. Langmuir, 2009, 25, 653-656.	1.6	19
131	Optimizing the formation of 2,6-bis(N-alkyl-benzimidazolyl)pyridine-containing [3]catenates through component design. Chemical Science, 2013, 4, 4440.	3.7	19
132	Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction. Biomacromolecules, 2017, 18, 1259-1267.	2.6	19
133	Effect of stoichiometry on liquid crystalline supramolecular polymers formed with complementary nucleobase pair interactions. Journal of Polymer Science Part A, 2006, 44, 5049-5059.	2.5	18
134	Chemorheology of Poly(high internal phase emulsions). Macromolecules, 2013, 46, 5393-5396.	2.2	17
135	Effect of processing conditions on the mechanical properties of bio-inspired mechanical gradient nanocomposites. European Polymer Journal, 2019, 115, 107-114.	2.6	17
136	Effect of Graft Molecular Weight and Density on the Mechanical Properties of Polystyrene-Grafted Cellulose Nanocrystal Films. Macromolecules, 2021, 54, 10594-10604.	2.2	15
137	Rheological Properties and Conformation of a Side-Chain Liquid Crystal Polysiloxane Dissolved in a Nematic Solvent. Macromolecules, 2005, 38, 5205-5213.	2.2	14
138	Polymers with bio-inspired strength. Nature Chemistry, 2009, 1, 347-348.	6.6	14
139	Synthesis and Characterization of Redox-Responsive Disulfide Cross-Linked Polymer Particles for Energy Storage Applications. ACS Macro Letters, 2021, 10, 1637-1642.	2.3	14
140	Light-Activated Healing of Metallosupramolecular Polymers. Chimia, 2011, 65, 745.	0.3	13
141	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
142	The Effect of Shear on the Evolution of Morphology in High Internal Phase Emulsions Used as Templates for Structural and Functional Polymer Foams. ACS Applied Polymer Materials, 2020, 2, 1579-1586.	2.0	12
143	Surfactant-Free Latex Nanocomposites Stabilized and Reinforced by Hydrophobically Functionalized Cellulose Nanocrystals. ACS Applied Polymer Materials, 2020, 2, 2291-2302.	2.0	12
144	Synthesis and structural properties of the first dodecakis(aryloxy)triphenylenes. Journal of Molecular Structure, 1997, 405, 169-178.	1.8	11

#	Article	IF	CITATIONS
145	Hydrodynamic interactions in topologically linked ring polymers. Physical Review E, 2020, 102, 032502.	0.8	11
146	Effect of metallosupramolecular polymer concentration on the synthesis of poly[<i>n</i>]catenanes. Chemical Science, 2021, 12, 8722-8730.	3.7	11
147	Nanocomposites Assembled via Electrostatic Interactions between Cellulose Nanocrystals and a Cationic Polymer. Biomacromolecules, 2021, 22, 5087-5096.	2.6	11
148	Synthesis and structure of the first per-substituted anthracene host: decakis(cyclopentylthio)anthracene. Supramolecular Chemistry, 1994, 3, 223-226.	1.5	10
149	The effect of polymer grafting on the mechanical properties of <scp>PEG</scp> â€grafted cellulose nanocrystals in poly(lactic acid). Journal of Polymer Science, 2022, 60, 3318-3330.	2.0	10
150	Microscale Characterization of a Mechanically Adaptive Polymer Nanocomposite With Cotton-Derived Cellulose Nanocrystals for Implantable BioMEMS. Journal of Microelectromechanical Systems, 2014, 23, 774-784.	1.7	9
151	Enhanced Ion Conductivity through Hydrated, Polyelectrolyte-Grafted Cellulose Nanocrystal Films. Macromolecules, 2021, 54, 6925-6936.	2.2	9
152	Metallomesogens. Angewandte Chemie - International Edition, 2005, 44, 4830-4832.	7.2	8
153	A Versatile Colorimetric Probe based on Thiosemicarbazide–Amine Proton Transfer. Chemistry - A European Journal, 2018, 24, 7369-7373.	1.7	8
154	Leveraging Actinide Hydrolysis Chemistry for Targeted Th and U Separations using Amidoximeâ€Functionalized Poly(HIPE)s. ChemPhysChem, 2020, 21, 1157-1165.	1.0	7
155	100th Anniversary of Macromolecular Science Viewpoints. ACS Macro Letters, 2021, 10, 466-468.	2.3	7
156	Squid Beak Inspired Cross-Linked Cellulose Nanocrystal Composites. Biomacromolecules, 2021, 22, 201-212.	2.6	6
157	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
158	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
159	Happy 100th Anniversary to Polymer Science and Engineering. ACS Macro Letters, 2020, 9, 122-122.	2.3	5
160	The Preparation of Metallosupramolecular Polymers and Gels by Utilizing 2,6-bis-(1′-Methyl-benzimidazolyl)Pyridine—Metal Ion Interactions. ACS Symposium Series, 2006, , 97-112.	0.5	4
161	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
162	Metastable doubly threaded [3]rotaxanes with a large macrocycle. Chemical Science, 2022, 13, 5333-5344.	3.7	4

#	Article	IF	CITATIONS
163	Combining Chemistry, Materials Science, Inspiration from Nature, and Serendipity to Develop Stimuliâ€Responsive Polymeric Materials. Israel Journal of Chemistry, 2020, 60, 100-107.	1.0	3
164	Fluid transport in open-cell polymeric foams: effect of morphology and surface wettability. SN Applied Sciences, 2020, 2, 1.	1.5	3
165	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
166	Model for the hydrodynamic dispersion of agglomerates incorporating thermoresponsive additives. Journal of Polymer Engineering, 2011, 31, .	0.6	2
167	Viewpoint Invitation. ACS Macro Letters, 2014, 3, 1036-1036.	2.3	2
168	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
169	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
170	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
171	Temperature Controlled Dispersion of Poly(N-Isopropyl Acrylamide) Treated Silica Clusters. Rubber Chemistry and Technology, 2008, 81, 809-820.	0.6	1
172	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
173	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
174	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
175	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
176	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
177	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
178	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
179	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
180	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1

#	Article	IF	CITATIONS
181	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
182	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
183	Ten Years of ACS Macro Letters. ACS Macro Letters, 2021, 10, 1132-1137.	2.3	1
184	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
185	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
186	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
187	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
188	Metallo-Supramolecular Polymers. , 2004, , 1-11.		0
189	Nucleobases as Supramolecular Motifs. ChemInform, 2005, 36, no.	0.1	0
190	Liquid crystalline supramolecular polymers formed via complementary nucleobase pair interactions. , 2006, , .		0
191	2013 ACS Macro Letters Editorial: Our First Year of Business. ACS Macro Letters, 2013, 2, 90-91.	2.3	0
192	<i>ACS Macro Letters</i> Onward and Upward!. ACS Macro Letters, 2014, 3, 119-120.	2.3	0
193	The Impact of ACS Macro Letters. ACS Macro Letters, 2015, 4, 63-64.	2.3	0
194	The Expansion of ACS Macro Letters. ACS Macro Letters, 2016, 5, 213-214.	2.3	0
195	Thanks Tim, from ACS Macro Letters!. ACS Macro Letters, 2018, 7, 105-106.	2.3	0
196	ACS Macro Letters, Moving Forward!. ACS Macro Letters, 2019, 8, 77-78.	2.3	0
197	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
198	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0

#	Article	IF	CITATIONS
199	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
200	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
201	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
202	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
203	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
204	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
205	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
206	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
207	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
208	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
209	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
210	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
211	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
212	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
213	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
214	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
215	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
216	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0

#	Article	IF	CITATIONS
217	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	Ο
218	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
219	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
220	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
221	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
222	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
223	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	Ο
224	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
225	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	Ο
226	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
227	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
228	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
229	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	Ο
230	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
231	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	Ο
232	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
233	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
234	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0

#	Article	IF	CITATIONS
235	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	Ο
236	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
237	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	Ο
238	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
239	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	Ο
240	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
241	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	Ο
242	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
243	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	Ο
244	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
245	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	ο
246	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
247	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	Ο
248	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
249	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	Ο
250	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
251	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	Ο
252	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0

#	Article	IF	CITATIONS
253	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
254	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
255	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
256	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
257	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
258	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
259	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
260	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
261	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
262	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
263	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
264	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
265	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
266	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
267	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
268	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
269	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
270	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0

#	Article	IF	CITATIONS
271	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
272	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
273	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
274	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
275	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	Ο
276	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
277	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
278	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
279	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	Ο
280	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
281	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	Ο
282	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
283	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
284	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
285	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
286	Happy 10th Anniversary to ACS Macro Letters!. ACS Macro Letters, 2021, 10, 39-40.	2.3	0
287	Polymers with Interwined Superstructures and Interlocked Structures. , 2005, , .		0
288	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0

#	Article	IF	CITATIONS
289	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
290	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
291	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
292	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
293	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
294	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
295	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
296	Stretching-Induced Thermal Conductivity Change in Shape-Memory Polymer Composites. Journal of Heat Transfer, 2020, 142, .	1.2	0
297	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
298	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
299	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
300	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
301	From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.	1.6	0