List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1520589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	INFLORESCENCE DEFICIENT IN ABSCISSION Controls Floral Organ Abscission in Arabidopsis and Identifies a Novel Family of Putative Ligands in Plants. Plant Cell, 2003, 15, 2296-2307.	3.1	340
2	The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Research, 2001, 29, 4319-4333.	6.5	299
3	The EPIP Peptide of INFLORESCENCE DEFICIENT IN ABSCISSION Is Sufficient to Induce Abscission in <i>Arabidopsis</i> through the Receptor-Like Kinases HAESA and HAESA-LIKE2 Â. Plant Cell, 2008, 20, 1805-1817.	3.1	275
4	Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5235-5240.	3.3	213
5	The <i>BLADE-ON-PETIOLE</i> genes are essential for abscission zone formation in <i>Arabidopsis</i> . Development (Cambridge), 2008, 135, 1537-1546.	1.2	186
6	The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant Journal, 1999, 19, 1-8.	2.8	163
7	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	3.1	155
8	Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION Activates Cell Separation in Vestigial Abscission Zones in Arabidopsis. Plant Cell, 2006, 18, 1467-1476.	3.1	148
9	A peroxiredoxin antioxidant is encoded by a dormancy-related gene,Per1, expressed during late development in the aleurone and embryo of barley grains. Plant Molecular Biology, 1996, 31, 1205-1216.	2.0	135
10	<i>Arabidopsis</i> Class I KNOTTED-Like Homeobox Proteins Act Downstream in the IDA-HAE/HSL2 Floral Abscission Signaling Pathway. Plant Cell, 2011, 23, 2553-2567.	3.1	123
11	Plant peptides in signalling: looking for new partners. Trends in Plant Science, 2009, 14, 255-263.	4.3	121
12	Seed 1-Cysteine Peroxiredoxin Antioxidants Are Not Involved in Dormancy, But Contribute to Inhibition of Germination during Stress. Plant Physiology, 2003, 133, 1148-1157.	2.3	116
13	Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and the embryo of developing barley (Hordeum vulgare L.) seeds. Plant Journal, 1994, 5, 385-396.	2.8	114
14	The ASH1 HOMOLOG 2 (ASHH2) Histone H3 Methyltransferase Is Required for Ovule and Anther Development in Arabidopsis. PLoS ONE, 2009, 4, e7817.	1.1	110
15	The CW domain, a new histone recognition module in chromatin proteins. EMBO Journal, 2011, 30, 1939-1952.	3.5	105
16	The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy. Plant Molecular Biology, 1998, 36, 833-845.	2.0	101
17	SET domain proteins in plant development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 407-420.	0.9	99
18	Tools and Strategies to Match Peptide-Ligand Receptor Pairs. Plant Cell, 2014, 26, 1838-1847.	3.1	98

#	Article	IF	CITATIONS
19	PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues. Plant Molecular Biology, 1992, 19, 381-389.	2.0	72
20	The <i>IDA/IDA-LIKE</i> and <i>PIP/PIP-LIKE</i> gene families in <i>Arabidopsis</i> : phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. Journal of Experimental Botany, 2015, 66, 5351-5365.	2.4	72
21	Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteinsin plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta, 1998, 206, 476-478.	1.6	69
22	The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS). Plant Molecular Biology, 2008, 66, 47-59.	2.0	69
23	Cell-autonomous behavior of the rolC gene of Agrobacterium rhizogenes during leaf development: a visual assay for transposon excision in transgenic plants Plant Cell, 1989, 1, 1157-1164.	3.1	68
24	Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of AGAMOUS-LIKE36. PLoS Genetics, 2011, 7, e1001303.	1.5	65
25	Ethylene-dependent and -independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. Journal of Experimental Botany, 2006, 57, 3627-3637.	2.4	62
26	The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants, 2018, 4, 596-604.	4.7	62
27	Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Research, 2002, 30, 4556-4566.	6.5	59
28	Peroxiredoxin antioxidants in seed physiology. Seed Science Research, 1999, 9, 285-295.	0.8	56
29	Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Research, 2003, 31, 5291-5304.	6.5	56
30	The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Research, 2006, 34, 5461-5470.	6.5	55
31	The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development. Nucleic Acids Research, 2006, 34, 4609-4621.	6.5	54
32	Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2. Frontiers in Plant Science, 2015, 6, 931.	1.7	50
33	The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis. PLoS Genetics, 2011, 7, e1001325.	1.5	49
34	The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Research, 2001, 10, 53-67.	1.3	48
35	IDA: a peptide ligand regulating cell separation processes in Arabidopsis. Journal of Experimental Botany, 2013, 64, 5253-5261.	2.4	47
36	Barley aleurone cell development: molecular cloning of aleurone-specific cDNAs from immature grains. Plant Molecular Biology, 1989, 12, 285-293.	2.0	45

#	Article	IF	CITATIONS
37	ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress. Plant Molecular Biology, 2003, 53, 313-326.	2.0	45
38	Drosophila dSet2 functions in H3-K36 methylation and is required for development. Biochemical and Biophysical Research Communications, 2007, 359, 784-789.	1.0	43
39	Primary structure of a novel barley gene differentially expressed in immature aleurone layers. Molecular Genetics and Genomics, 1991, 228, 9-16.	2.4	40
40	NEVERSHED and INFLORESCENCE DEFICIENT IN ABSCISSION are differentially required for cell expansion and cell separation during floral organ abscission in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64, 5345-5357.	2.4	39
41	The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root Â. Plant Physiology, 2014, 166, 632-643.	2.3	35
42	The transcripts encoding two oleosin isoforms are both present in the aleurone and in the embryo of barley (Hordeum vulgare L.) seeds. Plant Molecular Biology, 1995, 28, 583-588.	2.0	32
43	Control of Organ Abscission and Other Cell Separation Processes by Evolutionary Conserved Peptide Signaling. Plants, 2019, 8, 225.	1.6	31
44	The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling. Plant Cell, 2021, 33, 2915-2934.	3.1	30
45	Antagonistic peptide technology for functional dissection of CLE peptides revisited. Journal of Experimental Botany, 2015, 66, 5367-5374.	2.4	27
46	The Drosophila SET domain encoding gene dEset is essential for proper development. Hereditas, 2006, 143, 177-188.	0.5	25
47	Molecular analysis of Arabidopsis endosperm and embryo promoter trap lines: reporter-gene expression can result from T-DNA insertions in antisense orientation, in introns and in intergenic regions, in addition to sense insertion at the 5â€ ² end of genes. Journal of Experimental Botany, 2005, 56, 2495-2505.	2.4	20
48	<i>AtMBD8</i> is involved in control of flowering time in the C24 ecotype of <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2009, 136, 110-126.	2.6	20
49	Differential regulation of the barley (Hordeum vulgare) transcripts B22E and B12D in mature aleurone layers. Physiologia Plantarum, 1998, 102, 337-345.	2.6	18
50	Isolation of GUS marker lines for genes expressed in Arabidopsis endosperm, embryo and maternal tissues. Journal of Experimental Botany, 2003, 54, 279-290.	2.4	17
51	KNAT1, KNAT2 and KNAT6 act downstream in the IDA-HAE/HSL2 signaling pathway to regulate floral organ abscission. Plant Signaling and Behavior, 2012, 7, 135-138.	1.2	16
52	Transgene silencing may be mediated by aberrant sense promoter sequence transcripts generated from cryptic promoters. Cellular and Molecular Life Sciences, 2005, 62, 3080-3091.	2.4	13
53	Identification of a putative receptor-ligand pair controlling cell separation in plants. Plant Signaling and Behavior, 2008, 3, 1109-1110.	1.2	13
54	Stability of barley aleurone transcripts: Dependence on protein synthesis, influence of the starchy endosperm and destabilization by GA3. Physiologia Plantarum, 2001, 112, 403-413.	2.6	11

#	Article	IF	CITATIONS
55	A human CpG island randomly inserted into a plant genome is protected from methylation. Transgenic Research, 2002, 11, 133-142.	1.3	9
56	Polypeptides encoded by cryptic plasmids from Neisseria gonorrhoeae. Plasmid, 1985, 14, 209-216.	0.4	8
57	An inverted repeat transgene with a structure that cannot generate double-stranded RNA, suffers silencing independent of DNA methylation. Transgenic Research, 2006, 15, 489-500.	1.3	8
58	MOLECULAR CHARACTERIZATION AND COMPARISON OF PLASMID CONTENT IN SEVEN DIFFERENT STRAINS OF <i>NEISSERIA GONORRHOEAE</i> . Acta Pathologica, Microbiologica, Et Immunologica Scandinavica Section B, Microbiology, 1987, 95B, 13-21.	0.1	8
59	Receptor Ligands in Development. Signaling and Communication in Plants, 2012, , 195-226.	0.5	8
60	The <i>Arabidopsis</i> Histone Methyltransferase SUVR4 Binds Ubiquitin via a Domain with a Four-Helix Bundle Structure. Biochemistry, 2014, 53, 2091-2100.	1.2	7
61	Maturing peptides open for communication. Journal of Experimental Botany, 2013, 64, 5231-5235.	2.4	6
62	The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS Journal, 2020, 287, 4458-4480.	2.2	4
63	In Silico Prediction of Ligand-Binding Sites of Plant Receptor Kinases Using Conservation Mapping. Methods in Molecular Biology, 2017, 1621, 93-105.	0.4	2
64	Subcellular localization of proteins encoded by the phenotypically cryptic plasmid of Neisseria gonorrhoeae: biological evidence for outer membrane association of the cppB gene product. Molecular Microbiology, 1989, 3, 1433-1439.	1.2	1
65	Homology between cryptic plasmid from <i>Neisseria gonorrhoeae</i> and genomic DNA from <i>Neisseria meningitidis</i> . Apmis, 1993, 101, 201-206.	0.9	1
66	EcoR II is an Unreliable Enzyme for Studies of CpNpG Methylation in shape Arabidopsis thaliana. Plant Molecular Biology Reporter, 1998, 16, 19-32.	1.0	1
67	Methods to Identify New Partners of Plant Signaling Peptides. Signaling and Communication in Plants, 2012, , 241-256.	0.5	1
68	IDA/IDL. , 2013, , 24-30.		1
69	Editorial: Peptide Signaling in Plants. Frontiers in Plant Science, 2022, 13, 843918.	1.7	1