
Michael Fainzilber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1520459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-sitosterol reduces anxiety and synergizes with established anxiolytic drugs in mice. Cell Reports Medicine, 2021, 2, 100281.	3.3	13
2	The glycine arginineâ€rich domain of the RNAâ€binding protein nucleolin regulates its subcellular localization. EMBO Journal, 2021, 40, e107158.	3.5	23
3	A Ca2+-Dependent Switch Activates Axonal Casein Kinase 2α Translation and Drives G3BP1 Granule Disassembly for Axon Regeneration. Current Biology, 2020, 30, 4882-4895.e6.	1.8	22
4	Importin α3 regulates chronic pain pathways in peripheral sensory neurons. Science, 2020, 369, 842-846.	6.0	45
5	DYNLRB1 is essential for dynein mediated transport and neuronal survival. Neurobiology of Disease, 2020, 140, 104816.	2.1	15
6	Hidden Figures: A Non-translated RNA Regulates Axonal Neurotrophin Signaling. Neuron, 2019, 102, 507-509.	3.8	0
7	Cell size sensing—a one-dimensional solution for a three-dimensional problem?. BMC Biology, 2019, 17, 36.	1.7	9
8	Translating regeneration: Local protein synthesis in the neuronal injury response. Neuroscience Research, 2019, 139, 26-36.	1.0	29
9	Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nature Cell Biology, 2018, 20, 307-319.	4.6	233
10	Locally translated mTOR controls axonal local translation in nerve injury. Science, 2018, 359, 1416-1421.	6.0	220
11	Omics approaches for subcellular translation studies. Molecular Omics, 2018, 14, 380-388.	1.4	11
12	Importin α5 Regulates Anxiety through MeCP2 and Sphingosine Kinase 1. Cell Reports, 2018, 25, 3169-3179.e7.	2.9	25
13	The use of mouse models to probe cytoplasmic dynein function. , 2018, , 234-261.		4
14	hnRNPs Interacting with mRNA Localization Motifs Define AxoNAl RNA Regulons. Molecular and Cellular Proteomics, 2018, 17, 2091-2106.	2.5	32
15	Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nature Communications, 2018, 9, 3358.	5.8	114
16	Translatome Regulation in Neuronal Injury and Axon Regrowth. ENeuro, 2018, 5, ENEURO.0276-17.2018.	0.9	26
17	Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron, 2017, 96, 667-679.	3.8	107
18	COLORcation : A new application to phenotype exploratory behavior models of anxiety in mice. Journal of Neuroscience Methods. 2016. 270. 9-16.	1.3	10

#	Article	IF	CITATIONS
19	Nucleolin-Mediated RNA Localization Regulates Neuron Growth and Cycling Cell Size. Cell Reports, 2016, 16, 1664-1676.	2.9	64
20	Axonal <scp>PPAR</scp> Î ³ promotes neuronal regeneration after injury. Developmental Neurobiology, 2016, 76, 688-701.	1.5	30
21	Isolation and analyses of axonal ribonucleoprotein complexes. Methods in Cell Biology, 2016, 131, 467-486.	0.5	9
22	A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron, 2016, 89, 956-970.	3.8	314
23	Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin?. Molecular and Cellular Proteomics, 2016, 15, 341-343.	2.5	4
24	Growth control mechanisms in neuronal regeneration. FEBS Letters, 2015, 589, 1669-1677.	1.3	53
25	Macromolecular transport in synapse to nucleus communication. Trends in Neurosciences, 2015, 38, 108-116.	4.2	69
26	Local translation in neuronal processes— <i>in vivo</i> tests of a "heretical hypothesis― Developmental Neurobiology, 2014, 74, 210-217.	1.5	45
27	Axon–soma communication in neuronal injury. Nature Reviews Neuroscience, 2014, 15, 32-42.	4.9	230
28	WISâ€neuromath enables versatile high throughput analyses of neuronal processes. Developmental Neurobiology, 2013, 73, 247-256.	1.5	54
29	Alternative energy for neuronal motors. Nature, 2013, 495, 178-179.	13.7	7
30	Cell length sensing for neuronal growth control. Trends in Cell Biology, 2013, 23, 305-310.	3.6	33
31	Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO Journal, 2012, 31, 1350-1363.	3.5	241
32	STK25 Protein Mediates TrkA and CCM2 Protein-dependent Death in Pediatric Tumor Cells of Neural Origin. Journal of Biological Chemistry, 2012, 287, 29285-29289.	1.6	21
33	Subcellular Knockout of Importin β1 Perturbs Axonal Retrograde Signaling. Neuron, 2012, 75, 294-305.	3.8	180
34	A Motor-Driven Mechanism for Cell-Length Sensing. Cell Reports, 2012, 1, 608-616.	2.9	55
35	Functional Consequences of Necdin Nucleocytoplasmic Localization. PLoS ONE, 2012, 7, e33786.	1.1	10
36	From Synapse to Nucleus and Back AgainCommunication over Distance within Neurons. Journal of Neuroscience, 2011, 31, 16045-16048.	1.7	34

#	Article	IF	CITATIONS
37	Behavioral and Other Phenotypes in a Cytoplasmic Dynein Light Intermediate Chain 1 Mutant Mouse. Journal of Neuroscience, 2011, 31, 5483-5494.	1.7	23
38	When zip codes are in short supply. EMBO Journal, 2011, 30, 4520-4522.	3.5	2
39	Signaling to Transcription Networks in the Neuronal Retrograde Injury Response. Science Signaling, 2010, 3, ra53.	1.6	159
40	Axoplasm Isolation from Rat Sciatic Nerve. Journal of Visualized Experiments, 2010, , .	0.2	4
41	Axoplasm isolation from peripheral nerve. Developmental Neurobiology, 2010, 70, 126-133.	1.5	34
42	On the death Trk. Developmental Neurobiology, 2010, 70, 298-303.	1.5	25
43	Subcellular Communication Through RNA Transport and Localized Protein Synthesis. Traffic, 2010, 11, 1498-1505.	1.3	99
44	Axonal Transport Proteomics Reveals Mobilization of Translation Machinery to the Lesion Site in Injured Sciatic Nerve. Molecular and Cellular Proteomics, 2010, 9, 976-987.	2.5	54
45	Retrograde signaling in axonal regeneration. Experimental Neurology, 2010, 223, 5-10.	2.0	84
46	A human neuron injury model for molecular studies of axonal regeneration. Experimental Neurology, 2010, 223, 119-127.	2.0	12
47	Can Molecular Motors Drive Distance Measurements in Injured Neurons?. PLoS Computational Biology, 2009, 5, e1000477.	1.5	32
48	Ran on tracks – cytoplasmic roles for a nuclear regulator. Journal of Cell Science, 2009, 122, 587-593.	1.2	121
49	Ribosomes in axons – scrounging from the neighbors?. Trends in Cell Biology, 2009, 19, 236-243.	3.6	93
50	CCM2 Mediates Death Signaling by the TrkA Receptor Tyrosine Kinase. Neuron, 2009, 63, 585-591.	3.8	58
51	Nuclear transport factors in neuronal function. Seminars in Cell and Developmental Biology, 2009, 20, 600-606.	2.3	44
52	Retrograde Injury Signaling in Lesioned Axons. Results and Problems in Cell Differentiation, 2009, 48, 206-236.	0.2	11
53	European grants: a lifeline in poorly funded countries. Nature, 2008, 455, 285-285.	13.7	1
54	Localized Regulation of Axonal RanGTPase Controls Retrograde Injury Signaling in Peripheral Nerve. Neuron, 2008, 59, 241-252.	3.8	211

Michael Fainzilber

#	Article	IF	CITATIONS
55	AXONAL RESPONSES TO INJURY. , 2008, , 41-57.		Ο
56	Introduction: Translating development—From bench to bedside with molecular neurobiology. Developmental Neurobiology, 2007, 67, 1129-1132.	1.5	0
57	Activists: arson risks killing innocent people. Nature, 2007, 448, 22-22.	13.7	0
58	Vimentin Binding to Phosphorylated Erk Sterically Hinders Enzymatic Dephosphorylation of the Kinase. Journal of Molecular Biology, 2006, 364, 938-944.	2.0	141
59	Tracking in the Wlds—The Hunting of the SIRT and the Luring of the Draper. Neuron, 2006, 50, 819-821.	3.8	24
60	Retrograde signaling in injured nerve ? the axon reaction revisited. Journal of Neurochemistry, 2006, 99, 13-19.	2.1	160
61	Building Complex Brains – Missing Pieces in an Evolutionary Puzzle. Brain, Behavior and Evolution, 2006, 68, 191-195.	0.9	11
62	A Genome Wide Screening Approach for Membrane-targeted Proteins. Molecular and Cellular Proteomics, 2005, 4, 328-333.	2.5	4
63	Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve. Neuron, 2005, 45, 715-726.	3.8	483
64	O-Sulfonation of Serine and Threonine. Molecular and Cellular Proteomics, 2004, 3, 429-440.	2.5	122
65	Differential Proteomics Reveals Multiple Components in Retrogradely Transported Axoplasm After Nerve Injury. Molecular and Cellular Proteomics, 2004, 3, 510-520.	2.5	54
66	Multiâ€ŧasking by the p75 neurotrophin receptor: sortilin things out?. EMBO Reports, 2004, 5, 867-871.	2.0	82
67	Working hard for the money. Nature, 2004, 427, 485-485.	13.7	1
68	From snails to sciatic nerve: Retrograde injury signaling from axon to soma in lesioned neurons. Journal of Neurobiology, 2004, 58, 287-294.	3.7	53
69	Neurotrophic activities of trk receptors conserved over 600 million years of evolution. Journal of Neurobiology, 2004, 60, 12-20.	3.7	28
70	Integration of Retrograde Axonal and Nuclear Transport Mechanisms in Neurons: Implications for Therapeutics. Neuroscientist, 2004, 10, 404-408.	2.6	37
71	Axoplasmic Importins Enable Retrograde Injury Signaling in Lesioned Nerve. Neuron, 2003, 40, 1095-1104.	3.8	459
72	The Prodomain of a Secreted Hydrophobic Mini-protein Facilitates Its Export from the Endoplasmic Reticulum by Hitchhiking on Sorting Receptors. Journal of Biological Chemistry, 2003, 278, 26311-26314.	1.6	33

#	Article	IF	CITATIONS
73	Ligand-Induced Internalization of the p75 Neurotrophin Receptor: A Slow Route to the Signaling Endosome. Journal of Neuroscience, 2003, 23, 3209-3220.	1.7	180
74	Nerve Growth Factor-induced p75-mediated Death of Cultured Hippocampal Neurons Is Age-dependent and Transduced through Ceramide Generated by Neutral Sphingomyelinase. Journal of Biological Chemistry, 2002, 277, 9812-9818.	1.6	113
75	The p75 Neurotrophin Receptor Interacts with Multiple MAGE Proteins. Journal of Biological Chemistry, 2002, 277, 49101-49104.	1.6	84
76	Rabies Virus Glycoprotein (RVG) Is a Trimeric Ligand for the N-terminal Cysteine-rich Domain of the Mammalian p75 Neurotrophin Receptor. Journal of Biological Chemistry, 2002, 277, 37655-37662.	1.6	70
77	Three-dimensional Solution Structure of the Sodium Channel Agonist/Antagonist δ-Conotoxin TxVIA. Journal of Biological Chemistry, 2002, 277, 36387-36391.	1.6	30
78	Genetic Models Meet Trophic Mechanisms. Neuron, 2002, 33, 673-675.	3.8	9
79	Novel ω-Conotoxins Block Dihydropyridine-Insensitive High Voltage-Activated Calcium Channels in Molluscan Neurons. Journal of Neurochemistry, 2002, 67, 2155-2163.	2.1	28
80	Interactions of δ-Conotoxins with Alkaloid Neurotoxins Reveal Differences Between the Silent and Effective Binding Sites on Voltage-Sensitive Sodium Channels. Journal of Neurochemistry, 2002, 67, 2451-2460.	2.1	16
81	Don't punish scientists for government actions. Nature, 2002, 417, 15-15.	13.7	0
82	Evolving better brains: a need for neurotrophins?. Trends in Neurosciences, 2001, 24, 79-85.	4.2	62
83	Mechanisms for Evolving Hypervariability: The Case of Conopeptides. Molecular Biology and Evolution, 2001, 18, 120-131.	3.5	210
84	Position-specific codon conservation in hypervariable gene families. Trends in Genetics, 2000, 16, 57-59.	2.9	49
85	A lyso-platelet activating factor phospholipase C, originally suggested to be a neutral-sphingomyelinase, is located in the endoplasmic reticulum. FEBS Letters, 2000, 469, 44-46.	1.3	21
86	Ceramide Signaling Downstream of the p75 Neurotrophin Receptor Mediates the Effects of Nerve Growth Factor on Outgrowth of Cultured Hippocampal Neurons. Journal of Neuroscience, 1999, 19, 8199-8206.	1.7	184
87	… using peer review as a guide to quality. Nature, 1999, 401, 111-111.	13.7	1
88	Distinct structural elements in GDNF mediate binding to GFRalpha 1 and activation of the GFRalpha 1-c-Ret receptor complex. EMBO Journal, 1999, 18, 5901-5910.	3.5	103
89	Identification of tyrosine sulfation inConuspennaceus conotoxins α-PnIA and α-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry. , 1999, 34, 447-454.		85
90	Synthesis, Bioactivity, and Cloning of the L-Type Calcium Channel Blocker ω-Conotoxin TxVIIâ€. Biochemistry, 1999, 38, 12876-12884.	1.2	30

#	Article	IF	CITATIONS
91	Identification of tyrosine sulfation in Conus pennaceus conotoxins α-PnIA and α-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry Dedicated to the memory of Professor Dr Wilhelm I. Richter Journal of Mass Spectrometry, 1999, 34, 447.	0.7	4
92	Early evolutionary origin of the neurotrophin receptor family. EMBO Journal, 1998, 17, 2534-2542.	3.5	74
93	Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Letters, 1998, 424, 285-290.	1.3	105
94	γ-Conotoxin-PnVIIA, A γ-Carboxyglutamate-Containing Peptide Agonist of Neuronal Pacemaker Cation Currentsâ€. Biochemistry, 1998, 37, 1470-1477.	1.2	49
95	Advantage of knowing nature's secrets. Nature, 1997, 386, 431-431.	13.7	0
96	A Novel Hydrophobic ω-Conotoxin Blocks Molluscan Dihydropyridine-Sensitive Calcium Channels. Biochemistry, 1996, 35, 8748-8752.	1.2	50
97	CRNF, a Molluscan Neurotrophic Factor That Interacts with the p75 Neurotrophin Receptor. Science, 1996, 274, 1540-1543.	6.0	76
98	Mass spectrometricâ€based revision of the structure of a cysteineâ€rich peptide toxin with γâ€carboxyglutamic acid, TxVIIA, from the sea snail, <i>Conus textile</i> . Protein Science, 1996, 5, 524-530.	3.1	55
99	Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature, 1996, 381, 785-789.	13.7	785
100	Metamorphoses of a Conotoxin. Advances in Experimental Medicine and Biology, 1996, 391, 387-401.	0.8	0
101	Electrophysiological Characterization of a Novel Conotoxin That Blocks Molluscan Sodium Channels. European Journal of Neuroscience, 1995, 7, 815-818.	1.2	7
102	A New Conotoxin Affecting Sodium Current Inactivation Interacts with the δ-Conotoxin Receptor Site. Journal of Biological Chemistry, 1995, 270, 1123-1129.	1.6	52
103	New Sodium Channel-Blocking Conotoxins Also Affect Calcium Currents in Lymnaea Neurons. Biochemistry, 1995, 34, 5364-5371.	1.2	71
104	A new cysteine framework in sodium channel blocking conotoxins. Biochemistry, 1995, 34, 8649-8656.	1.2	35
105	Marine warning via peptide toxin. Nature, 1994, 369, 192-193.	13.7	8
106	New Mollusk-Specific .alphaConotoxins Block Aplysia Neuronal Acetylcholine Receptors. Biochemistry, 1994, 33, 9523-9529.	1.2	127
107	Alteration of Sodium Currents by New Peptide Toxins From the Venom of a MolluscivorousConusSnail. European Journal of Neuroscience, 1993, 5, 56-64.	1.2	57
108	Molluscivorous Conus Toxins as Probes for Voltage and Ligand Gated Ion Channels in Molluscs. Animal Biology, 1993, 44, 486-494.	0.4	1

#	Article	IF	CITATIONS
109	A new bioassay reveals mollusc-specific toxicity in molluscivorous Conus venoms. Toxicon, 1992, 30, 465-469.	0.8	15
110	Mollusc-specific toxins from the venom of Conus textile neovicarius. FEBS Journal, 1991, 202, 589-595.	0.2	88
111	Proteomic Approaches to Axon Injury– Postgenomic Approaches to a Posttranscriptional Process. , 0, , 153-166.		0